Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
3D Microelectronic Packaging - From Fundamentals to Applications
  Großes Bild
 
3D Microelectronic Packaging - From Fundamentals to Applications
von: Yan Li, Deepak Goyal
Springer-Verlag, 2017
ISBN: 9783319445861
465 Seiten, Download: 21476 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Contents 6  
  Contributors 8  
  About the Authors 10  
  Chapter 1: Introduction to 3D Microelectronic Packaging 11  
     1.1 Introduction 11  
     1.2 Why 3D Packaging 13  
        1.2.1 Moore´s Law 13  
        1.2.2 Small Form Factor Requires 3D Packaging 14  
        1.2.3 Improved System Performance with Reduced Power 15  
     1.3 3D Microelectronic Packaging Architectures 16  
        1.3.1 Die-to-Die 3D Integration 16  
        1.3.2 Package-to-Package 3D Integration 19  
        1.3.3 Heterogeneous 3D Integration 19  
     1.4 3D Microelectronic Packaging Challenges 21  
        1.4.1 Assembly Process, Yield, Test, and Cost Challenges 21  
        1.4.2 Thermal Management, Package Design, and Modeling Challenges 21  
        1.4.3 Material and Substrate Challenges 22  
        1.4.4 Quality, Reliability, and Failure Analysis Challenges 22  
        1.4.5 Summary 23  
     References 24  
  Chapter 2: 3D Packaging Architectures and Assembly Process Design 26  
     2.1 Introduction 27  
     2.2 3D TSV-Based Architectures: Advantages and Limitations 34  
     2.3 Methods of Fabrication and Other TSV Attributes 39  
     2.4 Assembly Process Flows 44  
     2.5 Manufacturing Yields and the Role of Test 48  
     2.6 Challenges with 3D TSV Architectures 51  
     2.7 Summary 52  
     References 52  
  Chapter 3: Materials and Processing of TSV 56  
     3.1 Introduction 56  
     3.2 Overview of TSV Materials and Processes 57  
     3.3 Fabrication of TSV and TSV Assembly 58  
        3.3.1 Creating a Via or Trench in Si Wafer 59  
           3.3.1.1 Laser Drilling 60  
           3.3.1.2 Powder Blast Micromachining 61  
           3.3.1.3 Wet Etching 62  
           3.3.1.4 Plasma-Based Methods 63  
        3.3.2 Sequential Filling of Si Via 66  
        3.3.3 Planarization and Die-Thinning 70  
     3.4 Flow Process for Fabricating TSVs and Integration of Dies 71  
        3.4.1 Sequence of Flow Process 71  
        3.4.2 Integration of Dies Comprising TSVs 73  
     3.5 Summary 74  
     References 75  
  Chapter 4: Microstructural and Reliability Issues of TSV 79  
     4.1 Introduction 79  
     4.2 Microstructural Characterization and Stress Measurement 80  
        4.2.1 Microstructural Characterization 80  
        4.2.2 Measurement of Stress State 82  
           4.2.2.1 Wafer Curvature Method 82  
           4.2.2.2 Micro-Raman Spectroscopy 83  
           4.2.2.3 X-Ray Diffraction-Based Techniques 84  
           4.2.2.4 Stress Metrology Challenges 85  
     4.3 Reliability Issues Associated with TSVs 85  
        4.3.1 Stresses in TSVs 85  
           4.3.1.1 Origin and Effect of Stresses 85  
           4.3.1.2 Microstructure and Stresses 89  
           4.3.1.3 Metal Pumping: Extrusion or Intrusion of TSVs 91  
        4.3.2 Electromigration Related Effects 96  
     4.4 Towards Atomistically informed Reliability Modeling of TSVs 99  
        4.4.1 The CPFE Method 99  
        4.4.2 The PFC Method 100  
     4.5 Summary 102  
     References 103  
  Chapter 5: Fundamentals and Failures in Die Preparation for 3D Packaging 108  
     5.1 Introduction 108  
     5.2 Brief Overview of TSV Wafer Fabrication Processes 109  
     5.3 Wafer Buckling and Wrinkling 115  
     5.4 Thermal Sliding Wafer Debonding 117  
     5.5 Wafer Laser Scribe 121  
     5.6 Wafer Saw Process 124  
     5.7 Wafer Die Ejector 129  
     5.8 Conclusions 131  
     References 132  
  Chapter 6: Direct Cu to Cu Bonding and Other Alternative Bonding Techniques in 3D Packaging 136  
     6.1 Introduction 136  
     6.2 Solder-Based vs. Solder-Less Bonding: Pros and Cons 137  
     6.3 Stacking and Bonding Schemes, Technologies, and Applications 139  
     6.4 Thermo-Compression Bonding (Diffusion Bonding): Material Fundamentals and Microstructure Effects 140  
     6.5 Passivation with Capping Layers (SAMs and Metals) 143  
     6.6 Surface Activated Bonding (SAB) Processes 144  
        6.6.1 Cu/Dielectric Hybrid Bonding 148  
        6.6.2 Cu/SiO2 Hybrid Bonding 149  
        6.6.3 Cu/Adhesive Hybrid Bonding 153  
     6.7 Alternative Bonding Techniques: Insertion Bonding 155  
     6.8 Cu-Cu Bonding: Equipment Landscape and State of the Art 157  
     6.9 Chapter Summary and Future Recommendations 157  
     References 158  
  Chapter 7: Fundamentals of Thermal Compression Bonding Technology and Process Materials for 2.5/3D Packages 163  
     7.1 Introduction 163  
     7.2 Background 164  
        7.2.1 Overview of 3D Package Configuration 165  
        7.2.2 Fundamentals of Thermal Compression Bonding Technology 168  
           7.2.2.1 Technical Challenges of Mass Reflow Process Compared with TCB 168  
           7.2.2.2 Thermal Compression Bonding Tool 172  
           7.2.2.3 Thermal Compression Bonding Process 174  
        7.2.3 Fundamentals of Process Materials 179  
           7.2.3.1 Introduction 179  
           7.2.3.2 Basic Properties Measurement 179  
           7.2.3.3 Wetting Study 183  
           7.2.3.4 Void Formation Study 185  
     7.3 Principles of Materials Formulation 186  
        7.3.1 Water-Soluble Flux 187  
        7.3.2 No-Clean Flux 188  
        7.3.3 Capillary Underfill 189  
        7.3.4 Epoxy Flux (No-Flow Underfill or Non-Conductive Paste) 190  
        7.3.5 Pre-Applied Epoxy-Based Materials (Non-Conductive Film and B-Stage Material) 192  
     7.4 Assembly Process Design 195  
        7.4.1 Introduction 195  
        7.4.2 TCB Assembly Building Block 196  
        7.4.3 TCB Assembly Building Block Design and Development 198  
           7.4.3.1 TSV Memory Stacking 199  
           7.4.3.2 Memory Module to Logic or Silicon Interposer Attachment 203  
     7.5 Summary and Discussion 206  
     References 207  
  Chapter 8: Fundamentals of Solder Alloys in 3D Packaging 210  
     8.1 The Microbumping Process 210  
     8.2 The Solder Alloys in Microbump 215  
     8.3 The Formation of Intermetallic Compounds in the As-Produced Microbump 215  
     8.4 Microstructure Variation of Microbump Under Thermal Mechanical Conditions 220  
     8.5 The Microstructure and Failure Mechanism of Microbump 222  
     8.6 Summary and Future Challenge 224  
     References 225  
  Chapter 9: Fundamentals of Electromigration in Interconnects of 3D Packaging 228  
     9.1 Introduction 228  
     9.2 Key Modulators for EM in Solder Joints 229  
        9.2.1 Typical EM Fail Caused by Sn Diffusion 229  
        9.2.2 EM Fail Caused by Metallization Dissolution 232  
     9.3 EM in Solder Joints of 3D Packaging 237  
        9.3.1 EM Damage due to Sn Flux Divergence in Micro Bumps 237  
        9.3.2 The Transformation of Full IMC Joint Under EM 238  
        9.3.3 Thermomigration Accompanied by EM 241  
     9.4 EM in TSV of 3D Packaging 243  
        9.4.1 EM for Cu Damascene Interconnects 244  
        9.4.2 EM Failure in TSV 245  
     9.5 Summary 247  
     References 248  
  Chapter 10: Fundamentals of Heat Dissipation in 3D IC Packaging 250  
     10.1 Introduction 250  
     10.2 Thermal Performance Parameters for 3D ICs 251  
     10.3 Air Cooling of 3D ICs 253  
     10.4 Jet Impingement and Spray Cooling 254  
     10.5 Microchannel Cooling 254  
     10.6 Thermal Design Considerations in 3D IC Architectures 255  
        10.6.1 Thermal Considerations in TSV Placements 257  
        10.6.2 Thermal Analysis Tools for 3D ICs 257  
        10.6.3 Performance Considerations 257  
     10.7 Liquid Cooling with Integrated Microchannels 258  
        10.7.1 Variable Fin Density in Microchannel Passages 258  
        10.7.2 Two-Phase Cooling 262  
     10.8 Future Directions 262  
     References 263  
  Chapter 11: Fundamentals of Advanced Materials and Processes in Organic Substrate Technology 266  
     11.1 Introduction 266  
     11.2 Overview of Substrate Technology Evolution 267  
     11.3 Organic Substrate Materials 267  
        11.3.1 Materials Employed in Organic Substrate Production 267  
        11.3.2 General Considerations 269  
        11.3.3 Substrate and PWB Cores 274  
           11.3.3.1 Reinforcement Materials 275  
           11.3.3.2 Resin Systems 278  
           11.3.3.3 Conductors 281  
        11.3.4 Dielectric Materials 282  
        11.3.5 PTH and Via Filling Materials 284  
        11.3.6 Solder Mask Materials 285  
        11.3.7 Surface Finishes 286  
        11.3.8 Summary 286  
     11.4 Organic Substrate Fabrication 289  
        11.4.1 Substrate Raw Material Selection and Preparation 290  
        11.4.2 Inner Layer Imaging 292  
        11.4.3 Multilayer Buildup 292  
        11.4.4 Soldermask and Surface Finish Application 294  
        11.4.5 Final Sizing, Testing, Inspection, and Shipment 295  
     References 295  
  Chapter 12: Die and Package Level Thermal and Thermal/Moisture Stresses in 3D Packaging: Modeling and Characterization 297  
     12.1 Introduction 299  
     12.2 Thermal Stress and Its Effects on TSV Structures 300  
        12.2.1 Introduction 300  
        12.2.2 Characteristics of TSV Stress by Semi-analytic and Numerical Solutions 300  
        12.2.3 Measurement of Thermal Stress 302  
        12.2.4 Effect of Thermal Stress on Carrier Mobility and Keep-Out Zone 305  
        12.2.5 Thermal Stress Induced via Extrusion 306  
     12.3 Thermal Stresses and Warpage Control at Package Level 309  
        12.3.1 Introduction 309  
        12.3.2 Thermal Stresses in a Multilayered Structure 310  
        12.3.3 Warpage Mechanism and Control Methods 312  
        12.3.4 A Capped-Die Approach for Warpage Control 314  
        12.3.5 Warpage Characterization by Experimental Testing 315  
        12.3.6 Numerical Modeling for Optimizing Warpage Control Design 317  
           12.3.6.1 Comparison of Different Control Methods 317  
           12.3.6.2 Optimization of Cap Thickness to Achieve Warpage-Free Packages 318  
           12.3.6.3 Overcontrolled Warpage 319  
           12.3.6.4 Warpage-Free Control for Coreless Substrate 319  
     12.4 Integrated Stress Analysis for Combining Moisture and Thermal Effects 321  
        12.4.1 Introduction 321  
        12.4.2 Moisture Diffusion 322  
        12.4.3 Moisture-Induced Strain and Effective Stress Theory 324  
        12.4.4 Vapor Pressure Modeling 325  
        12.4.5 Governing Equation for Integrated Stress Analysis 327  
        12.4.6 Case Studies 327  
     12.5 Summary 331  
     References 333  
  Chapter 13: Processing and Reliability of Solder Interconnections in Stacked Packaging 337  
     13.1 Introduction 337  
        13.1.1 Miniaturization and Functionality Trends 337  
        13.1.2 3D Packaging Variations 339  
        13.1.3 Applications Drive PoP and PoPoP Component Requirements 340  
     13.2 Soldering Assembly Processes 341  
        13.2.1 Solder Alloys 342  
           13.2.1.1 Sn-Pb Solders 342  
           13.2.1.2 Pb-Free Solders: ``High Ag´´ Alloys 342  
           13.2.1.3 Pb-Free Solders: ``Low Ag´´ Alloys 343  
           13.2.1.4 Mixed Solder Joints 343  
        13.2.2 Fluxes and Pastes 344  
        13.2.3 Assembly Methodologies 346  
           13.2.3.1 Stacked Packages 346  
           13.2.3.2 Soldering Assembly (Second-Level Interconnections) 348  
           13.2.3.3 Cleaning Considerations 348  
           13.2.3.4 Rework 349  
        13.2.4 Inspection Techniques 350  
        13.2.5 Underfill, Conformal Coatings, and Encapsulants 352  
           13.2.5.1 Underfill 352  
           13.2.5.2 Conformal Coatings 354  
           13.2.5.3 Encapsulants 355  
        13.2.6 Warpage Effects 355  
     13.3 Solder Joint Reliability 358  
        13.3.1 Environments 358  
           13.3.1.1 Use Conditions 358  
           13.3.1.2 Consumer Electronics 359  
           13.3.1.3 High-Reliability Electronics 360  
           13.3.1.4 Accelerated Aging 361  
        13.3.2 Underfill, Conformal Coatings, and Encapsulants 362  
           13.3.2.1 Materials Properties 362  
           13.3.2.2 Geometry 363  
        13.3.3 Reliability Studies 363  
           13.3.3.1 Mechanical Shock and Vibration 363  
              Solder Alloy Effects 364  
              Surface Finish Effects 364  
              Importance of Test Standards 365  
           13.3.3.2 Temperature Cycling 365  
              Temperature Limits 366  
              Test Vehicle Construction 366  
              Materials Set for Computational Modeling 367  
              Solder Alloy Fatigue Properties 367  
              Effects of Alloy Composition and Underfill on Solder Joint Reliability: An Empirical Study 368  
     13.4 Summary and Future Trends 373  
        13.4.1 Summary 373  
        13.4.2 Future Trends 374  
     References 375  
  Chapter 14: Interconnect Quality and Reliability of 3D Packaging 378  
     14.1 Introduction 378  
     14.2 Quality Challenges for 3D Packaging 379  
     14.3 Quality and Reliability of Microbumps 383  
        14.3.1 Type 1: Cu/Sn/Cu 383  
           14.3.1.1 Microstructure of Cu-Sn IMCs-Based Microbump 383  
           14.3.1.2 Microstructural Characteristics of Cu6Sn5 in Microbump 383  
           14.3.1.3 Kirkendall Void and Porous Void Formation in Cu3Sn 386  
           14.3.1.4 Anisotropic Effect in Microbump 387  
        14.3.2 Type 2: Ni/Sn/Ni 391  
        14.3.3 Type 3: Cu/Sn/Ni 394  
        14.3.4 Type 4: Cu/Ni/Sn/Ni/Cu 396  
           14.3.4.1 Typical Composition Parameters of Cu/Ni/Sn/Ni/Cu Microbumps 396  
           14.3.4.2 IMC/Solder Interfacial Crack Formation 397  
           14.3.4.3 Ni as Effective Diffusion Barrier to Suppress Kirkendall Void Formation 398  
        14.3.5 Concluding Remarks 400  
     14.4 Field Performance Prediction of 3D Packaging 400  
     14.5 Electromigration Reliability for 3D IC Packaging 402  
        14.5.1 Introduction on Electromigration 403  
           14.5.1.1 Back Stress 403  
           14.5.1.2 Statistical Analysis by Weibull Distribution Function in Reliability Study 404  
        14.5.2 Experimental Studies of Electromigration in Al and Cu Interconnects 405  
        14.5.3 Electromigration in Flip Chip Solder Joints 406  
        14.5.4 System Level Electromigration Studies in 3D IC Packaging 406  
           14.5.4.1 Electromigration in Microbumps 407  
           14.5.4.2 Electromigration in TSVs 408  
        14.5.5 System Level Weak-Link Failure in 2.5D Integrated Circuits 409  
        14.5.6 Concluding Remarks 412  
     14.6 Thermomigration in 3D IC Packaging 412  
        14.6.1 Introduction 412  
        14.6.2 Fundamentals of Thermomigration 413  
           14.6.2.1 Traditional TM Studies 413  
        14.6.3 Thermomigration Studies in 3D IC Packaging 415  
           14.6.3.1 Thermomigration in Microbumps 415  
           14.6.3.2 Thermomigration in TSV 417  
           14.6.3.3 Thermomigration Induced by Thermal Crosstalk 418  
        14.6.4 Concluding Remarks 418  
     References 419  
  Chapter 15: Fault Isolation and Failure Analysis of 3D Packaging 424  
     15.1 Introduction 424  
     15.2 Fault Isolation and Failure Analysis Challenges for Advanced 3D Packages 426  
     15.3 The Application of Nondestructive FI and FA Techniques to 3D Microelectronic Packages 427  
        15.3.1 Nondestructive Fault Isolation Techniques for Electrical Failures in 3D Microelectronic Packages 427  
           15.3.1.1 Time-Domain Reflectometry 427  
           15.3.1.2 Electro Optic Terahertz Pulse Reflectometry 429  
           15.3.1.3 Lock-in Thermography 431  
           15.3.1.4 Scanning Superconducting Quantum Interference Device Microscopy 432  
        15.3.2 High Resolution Non-destructive Imaging Techniques for 3D Microelectronic Packages 434  
           15.3.2.1 Scanning Acoustic Microscopy 435  
           15.3.2.2 2D X-Ray Radiography 442  
           15.3.2.3 3D X-Ray Computed Tomography (CT) 444  
     15.4 The Application of Sample Preparation and Material Analysis Techniques to 3D Microelectronic Packages 447  
        15.4.1 Sample Preparation Techniques 447  
           15.4.1.1 Nanosecond (ns) and Femtosecond (fs) Laser Ablation Techniques 448  
           15.4.1.2 Plasma Focused Ion Beam (FIB) 448  
           15.4.1.3 Broad-Beam Argon Ion Milling (EDX) 449  
        15.4.2 Material Analysis Techniques 449  
           15.4.2.1 Energy-Dispersive X-ray Spectroscopy (EDX) 450  
           15.4.2.2 X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) 451  
           15.4.2.3 Electron Backscatter Diffraction (EBSD) 452  
     15.5 Failure Analysis Strategies for 3D Packages 454  
        15.5.1 Understanding the Package Assembly Process, Reliability Stress, and Failure Rate Distribution 454  
        15.5.2 Efficient FI-FA Flow to Identify Defects 456  
        15.5.3 In-Depth Failure Mechanism and Root Cause Understanding to Provide Solution Paths 458  
     15.6 Conclusions 459  
     References 460  
  Index 463  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz