Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Foundations of Solid State Physics - Dimensionality and Symmetry
  Großes Bild
 
Foundations of Solid State Physics - Dimensionality and Symmetry
von: Siegmar Roth, David Carroll
Wiley-VCH, 2019
ISBN: 9783527816569
592 Seiten, Download: 22007 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Cover 1  
  Title Page 5  
  Copyright 6  
  Contents 7  
  Preface 15  
  Chapter 1 Introduction 19  
     1.1 Dimensionality 20  
     1.2 Approaching Dimensionality from Outside and from Inside 22  
     1.3 Dimensionality of Carbon: Solids 26  
        1.3.1 Three?Dimensional Carbon: Diamond 28  
        1.3.2 Two?Dimensional Carbon: Graphite and Graphene 28  
        1.3.3 One?Dimensional Carbon: Cumulene, Polycarbyne, and Polyene 30  
        1.3.4 Zero?Dimensional Carbon: Fullerene 31  
     1.4 Something in Between: Topology 32  
     1.5 More Peculiarities of Dimension: One Dimension 34  
     1.6 Summary 37  
     References 44  
  Chapter 2 One?Dimensional Substances 47  
     2.1 A15 Compounds 50  
     2.2 Krogmann Salts 55  
     2.3 Alchemists' Gold 58  
     2.4 Bechgaard Salts and Other Charge?Transfer Compounds 60  
     2.5 Polysulfurnitride 63  
     2.6 Phthalocyanines and Other Macrocycles 65  
     2.7 Transition Metal Chalcogenides and Halides 66  
     2.8 Halogen?Bridged Mixed?Valence Transition Metal Complexes 68  
     2.9 Returning to Carbon 70  
        2.9.1 Conducting Polymers 71  
        2.9.2 Carbon Nanotubes 73  
     2.10 Perovskites 77  
     2.11 Topological States 79  
     2.12 What Did We Forget? 80  
        2.12.1 Poly?deckers 80  
        2.12.2 Polycarbenes 81  
        2.12.3 Isolated, Freestanding Nanowires 81  
        2.12.4 Templates and Filled Pores 82  
        2.12.5 Asymmetric Growth Using Catalysts 83  
        2.12.6 Gated Semiconductor Quantum Wires 84  
        2.12.7 Few?Atom Metal Nanowires 84  
     2.13 A Summary of Our Materials 86  
     References 87  
  Chapter 3 Order and Symmetry: The Lattice 93  
     3.1 The Correlation Function 94  
     3.2 The Real Space Crystal Lattice and Its Basis 95  
        3.2.1 Using a Coordinate System 99  
        3.2.2 Surprises in Two?Dimensional Lattices 104  
        3.2.3 The One?Dimensional Lattice 109  
        3.2.4 Polymers as One?Dimensional Lattices 110  
        3.2.5 Carbon Nanotubes as One?Dimensional Lattices 111  
     3.3 Bonding and Binding 112  
     3.4 Spatial Symmetries Are Not Enough: Time Crystals 119  
     3.5 Summary 120  
     References 128  
  Chapter 4 The Reciprocal Lattice1 129  
     4.1 Describing Objects Using Momentum and Energy 129  
        4.1.1 Constructing the Reciprocal Lattice 130  
        4.1.2 The Unit Cell 132  
     4.2 The Reciprocal Lattice and Scattering 134  
        4.2.1 General Scattering 134  
        4.2.2 Real Systems 138  
        4.2.3 Applying This to Real One?Dimensional Systems 141  
     4.3 A Summary of the Reciprocal Lattice 143  
     References 146  
  Chapter 5 The Dynamic Lattice 147  
     5.1 Crystal Vibrations and Phonons 148  
        5.1.1 A Simple One?Dimensional Model 151  
           5.1.1.1 A Model 151  
           5.1.1.2 Long Wavelength Vibrations 154  
           5.1.1.3 Short Wavelength Vibrations 155  
           5.1.1.4 More Atoms in the Basis 155  
        5.1.2 More Dimensions 157  
     5.2 Quantum Considerations with Phonons 161  
        5.2.1 Conservation of Crystal Momentum 162  
        5.2.2 General Scattering 162  
     5.3 Phonons Yield Thermal Properties 165  
        5.3.1 Internal Energy and Phonons 166  
        5.3.2 Models of Energy Distribution: fp(?) and ?K,p 168  
           5.3.2.1 DuLong and Petit: Equipartition of Energy 168  
           5.3.2.2 Einstein and Quantum Statistics 169  
           5.3.2.3 Debye and the Spectral Analysis 170  
        5.3.3 The Debye Approximation 174  
        5.3.4 Generalizations of the Density of States 177  
        5.3.5 Other Thermal Properties: Thermal Transport 179  
     5.4 Anharmonic Effects 180  
     5.5 Summary of Phonons 186  
     References 190  
  Chapter 6 Electrons in Solids 191  
     Evolving Pictures 192  
     Superconductors 194  
     6.1 Properties of Electrons: A Review 194  
        6.1.1 Electrons Travel as Waves 194  
           6.1.1.1 Delocalization 194  
           6.1.1.2 Localization 196  
        6.1.2 Electrons Arrive as Particles: Statistics 196  
        6.1.3 The Fermi Surface 198  
     6.2 On to the Models 199  
        6.2.1 The Free?Electron Model 199  
        6.2.2 Nearly Free Electrons, Energy Bands, Energy Gaps, Density of States 202  
           6.2.2.1 Bloch's Theorem 203  
           6.2.2.2 The Nearly Free 1D Model 203  
           6.2.2.3 Analyzing the 1D Nearly Free Solutions 205  
           6.2.2.4 Extending Dispersion Curves to 3D 208  
        6.2.3 Tight Binding or Linear Combination of Atomic Orbitals 209  
           6.2.3.1 The Formalism 211  
           6.2.3.2 The s?Band 212  
           6.2.3.3 s Bands in One Dimension 213  
           6.2.3.4 s Bands in Two Dimensions 213  
           6.2.3.5 s Bands in Three Dimensions 214  
        6.2.4 What About Orbitals Other Than s? 215  
           6.2.4.1 Building Bands in a Polymer 216  
           6.2.4.2 Bonding and Antibonding States 216  
           6.2.4.3 The Polyenes 217  
           6.2.4.4 Translating to Bloch's Theorem 221  
        6.2.5 Tight Binding with a Basis 224  
           6.2.5.1 Hybridization 227  
           6.2.5.2 Graphene: A Two?Dimensional Example 229  
           6.2.5.3 Carbon Nanotubes 231  
     6.3 Are We Done Yet? 233  
     6.4 Summary 235  
     References 241  
  Chapter 7 Electrons in Solids Part II: Spatial Heterogeneity 243  
     7.1 Heterogeneity: Band?Level Diagrams and the Contact 244  
     7.2 Heterogeneity in Semiconductors 247  
        7.2.1 Semiconductors: Bandgaps and Doping 248  
           7.2.1.1 Band?Level Diagrams 248  
           7.2.1.2 Doping 248  
           7.2.1.3 Carrier Concentrations in Intrinsic and Doped Semiconductors 253  
           7.2.1.4 The Fermi Level vs. the Chemical Potential 257  
           7.2.1.5 Spectroscopy of the Dopant Levels 258  
           7.2.1.6 Carbon Does Not ``Dope'' Like Si 260  
        7.2.2 Junctions with Semiconductors 262  
     7.3 Other Types of Heterogeneity 267  
     7.4 Summary 269  
     References 275  
  Chapter 8 Electrons Moving in Solids 277  
     8.1 Phenomenology of Electron Dynamics in a Material 277  
        8.1.1 Free?Electron Metals 277  
        8.1.2 The Free?Electron Metal as a Fluid 280  
        8.1.3 Temperature and Conductivity 282  
     8.2 The Semiclassical Approach: The Boltzmann Equation 285  
        8.2.1 The Sources of Electron Scattering 285  
        8.2.2 The Nonequilibrium Distribution Function 286  
        8.2.3 The Relaxation Time ? 286  
        8.2.4 The Differential Equation for g(r 286  
        8.2.5 Introducing Collisions 287  
        8.2.6 The Relaxation Time Approximation 288  
        8.2.7 Isotropic Scattering from Stationary States 289  
        8.2.8 A Simple Example: Ohm's Law 289  
        8.2.9 Parabolic Bands 290  
        8.2.10 Another Simple Example: AC Conductivity and Linear Response 291  
        8.2.11 An Example with Anisotropy: ? &equals 291  
        8.2.12 The Seebeck Effect and Thermopower 292  
        8.2.13 A Final Example: Static E and B Applied but ? ???(r) and ?rT &equals 295  
        8.2.14 The Hall Effect and Magnetotransport 297  
        8.2.15 The Curious Case of Al 298  
     8.3 Coherent Transport: The Landauer–Büttiker Approach 299  
     8.4 General Remarks on Measurements 301  
        8.4.1 Simple Conductivity 301  
        8.4.2 Conductivity of Small Particles 305  
        8.4.3 Conductivity of High Impedance Samples 306  
        8.4.4 Conductivity Measurements Without Contacts 307  
     8.5 Complications: Localization, Hopping, and General Bad Behavior 308  
     8.6 Summary 311  
     References 315  
  Chapter 9 Polarons, Solitons, Excitons, and Conducting Polymers 319  
     9.1 Distortions, Instabilities, and Transitions in One Dimension 321  
        9.1.1 Coupling Charge with the Lattice 321  
        9.1.2 Peierls Instability 323  
        9.1.3 Results of Peierls in Real Systems 326  
           9.1.3.1 Phonon Softening and the Kohn Anomaly 326  
           9.1.3.2 Fermi Surface Warping 327  
     9.2 Conjugation and the Double Bond 328  
     9.3 Conjugational Defects 331  
     9.4 The Soliton 335  
        9.4.1 Doping 337  
        9.4.2 Quasiparticles 338  
     9.5 Generation of Solitons 343  
     9.6 Nondegenerate Ground?State Polymers: Polarons 346  
     9.7 Fractional Charges 350  
     9.8 Soliton Lifetime 352  
     9.9 Conductivity and Solitons 355  
     9.10 Fibril Conduction 359  
     9.11 Hopping Conductivity: Variable Range Hopping vs. Fluctuation?Assisted Tunneling 363  
     9.12 Highly Conducting Polymers 371  
     9.13 Magnetoresistance 372  
     9.14 Organic Molecular Devices 378  
        9.14.1 Molecular Switches 378  
        9.14.2 LB Diodes 381  
        9.14.3 Organic Light?Emitting Diodes 382  
           9.14.3.1 Fundamentals of OLEDs 384  
           9.14.3.2 Materials for OLEDs 388  
           9.14.3.3 Designs for OLEDs 389  
           9.14.3.4 Performance of OLEDs 390  
        9.14.4 Field?Induced Organic Emitters 391  
        9.14.5 Organic Lasers and Organic Light?Emitting Transistors 394  
           9.14.5.1 Current Densities 397  
           9.14.5.2 Contacts 397  
           9.14.5.3 Polarons and Triplets 397  
        9.14.6 Organic Solar Cells 398  
        9.14.7 Organic Field?Effect Transistors 402  
        9.14.8 Organic Thermoelectrics 403  
     9.15 Summary 405  
     References 408  
  Chapter 10 Correlation and Coupling 421  
     10.1 The Metal?to?Insulator Transition and the Mott Insulator 421  
        10.1.1 The Hamiltonian 424  
        10.1.2 The Lattice and Antiferromagnetic Ordering 425  
        10.1.3 Other Considerations: The Particle?Hole Symmetry (PHS) 425  
        10.1.4 The Hubbard Model in Lower Dimensions 426  
        10.1.5 Real One?Dimensional Mott Systems 428  
     10.2 The Superconductor 429  
        10.2.1 The Basic Phenomena 429  
           10.2.1.1 In What Compounds Has Superconductivity Been Observed? 433  
        10.2.2 A Basic Model 433  
           10.2.2.1 How Does an Attractive Potential Show Up Between Two Negatively Charged Particles? 434  
           10.2.2.2 Cooper Pair Binding 436  
           10.2.2.3 The BCS Ground State 438  
           10.2.2.4 Supplementary Thoughts 443  
        10.2.3 Superconductivity Measurements Are Tricky 446  
        10.2.4 Superconductivity and Dimensionality 448  
        10.2.5 More on Organic Superconductors 449  
           10.2.5.1 One?Dimensional Organic Superconductors 450  
           10.2.5.2 Two?Dimensional Organic Superconductors 453  
           10.2.5.3 Three?Dimensional Organic Superconductors 454  
        10.2.6 Trends 456  
     10.3 The Charge Density Wave 458  
        10.3.1 The Charge Density Wave and Peierls 458  
           10.3.1.1 Modulation of the Electron and Mass Densities 459  
           10.3.1.2 Starting with Polymers 459  
           10.3.1.3 A Gap Is Introduced 460  
           10.3.1.4 The Order Parameter 460  
           10.3.1.5 Phase Dynamics, Pinning, Commensurability, and Solitons 460  
        10.3.2 Peierls and Coulomb Interactions: Spin Interactions 464  
           10.3.2.1 4kF Charge Density Waves 464  
           10.3.2.2 Spin Peierls Waves 466  
           10.3.2.3 Spin Density Waves 466  
        10.3.3 Phonon Dispersion: Phase and Amplitude in CDWs 468  
        10.3.4 More on Peierls–Fröhlich Mechanisms 470  
        10.3.5 Spin Density Waves and the Quantized Hall Effect 471  
     10.4 Plasmons 472  
        10.4.1 The Drude Model and the Dielectric Function 472  
        10.4.2 The Significance of the Plasma Frequency 473  
     10.5 Composite Particles and Quasiparticles: A Summary 475  
     References 476  
  Chapter 11 Magnetic Interactions 485  
     11.1 Magnetism of the Atom 487  
     11.2 The Crystal Field 490  
     11.3 Magnetism in Condensed Systems 492  
        11.3.1 Paramagnetism 492  
           11.3.1.1 Curie Paramagnets 494  
           11.3.1.2 The Weiss Correction 495  
           11.3.1.3 Free?Electron Magnets 496  
        11.3.2 Diamagnetism 497  
     11.4 Dia? and Para?Foundations of Other Magnets 499  
     11.5 Mechanisms of Interaction: Spin Models 500  
        11.5.1 The Mean Field Model 501  
        11.5.2 Ising, Heisenberg, XY, and Hopfield 501  
           11.5.2.1 Ising Models 501  
           11.5.2.2 Heisenberg Models 503  
           11.5.2.3 XY models 503  
           11.5.2.4 Hopfield Models 505  
        11.5.3 Spin Wave and Magnons 506  
           11.5.3.1 Spin Waves 506  
           11.5.3.2 Thermodynamics 509  
           11.5.3.3 The Particle Nature of Magnons 511  
           11.5.3.4 Stoner Excitations 512  
           11.5.3.5 Coupling to the Electromagnetic Field: Magnon–Photon Coupling 512  
     11.6 More Complicated Situations 512  
        11.6.1 Double Exchange 512  
        11.6.2 Super Exchange 514  
        11.6.3 RKKY 514  
     11.7 Time Reversal Symmetry 515  
     11.8 Summary 516  
     References 519  
  Chapter 12 Polarization of Materials 521  
     12.1 Simple Atomic Models 521  
        12.1.1 Linearity in the Response 522  
        12.1.2 Relating the Fields 525  
     12.2 Temperature Dependence 527  
     12.3 Time Dependence: ?(?) 528  
     12.4 A Familiar Equation in Optics 531  
     12.5 Understanding the Context 532  
     12.6 The Dielectric Function and Metals 532  
     12.7 Piezoelectrics, Pyroelectrics, and More 533  
        12.7.1 The h?BN Example 536  
     12.8 Summary 537  
     References 541  
  Chapter 13 Optical Interactions 543  
     13.1 Maxwell and the Solid (Review) 545  
        13.1.1 In a Vacuum 545  
        13.1.2 In a Material 546  
        13.1.3 A General Solution in the Solid 547  
           13.1.3.1 A Fun Notational Fact 549  
     13.2 Polarization Coupling: Polaritons 550  
        13.2.1 Phonons with Electrical Polarization 550  
        13.2.2 Phonons Meet Photons 552  
        13.2.3 The Phonon–Polariton 553  
        13.2.4 The Plasmon Polariton 556  
     13.3 Optical Transitions, Excitons, and Exciton Polaritons 561  
        13.3.1 Transitions 561  
        13.3.2 Carbon Nanotubes: An Example 564  
        13.3.3 Color Centers and Dopants 564  
        13.3.4 Excitons 566  
        13.3.5 Exciton Polaritons 567  
     13.4 Kramers–Kronig 567  
     13.5 Summary 569  
     References 573  
  Chapter 14 The End and the Beginning 575  
     Reference 576  
  Index 577  
  EULA 592  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz