Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Group Theory in Solid State Physics and Photonics - Problem Solving with Mathematica
  Großes Bild
 
Group Theory in Solid State Physics and Photonics - Problem Solving with Mathematica
von: Wolfram Hergert, R. Matthias Geilhufe
Wiley-VCH, 2018
ISBN: 9783527413003
377 Seiten, Download: 22696 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Cover 1  
  Main title 5  
  Copyright page 6  
  Contents 7  
  Preface 13  
  1 Introduction 17  
     1.1 Symmetries in Solid-State Physics and Photonics 20  
     1.2 A Basic Example: Symmetries of a Square 22  
  Part One Basics of Group Theory 25  
     2 Symmetry Operations and Transformations of Fields 27  
        2.1 Rotations and Translations 27  
           2.1.1 Rotation Matrices 29  
           2.1.2 Euler Angles 32  
           2.1.3 Euler–Rodrigues Parameters and Quaternions 34  
           2.1.4 Translations and General Transformations 39  
        2.2 Transformation of Fields 41  
           2.2.1 Transformation of Scalar Fields and Angular Momentum 42  
           2.2.2 Transformation of Vector Fields and Total Angular Momentum 43  
           2.2.3 Spinors 44  
     3 Basics Abstract Group Theory 49  
        3.1 Basic Definitions 49  
           3.1.1 Isomorphism and Homomorphism 54  
        3.2 Structure of Groups 55  
           3.2.1 Classes 56  
           3.2.2 Cosets and Normal Divisors 58  
        3.3 Quotient Groups 62  
        3.4 Product Groups 64  
     4 Discrete Symmetry Groups in Solid-State Physics and Photonics 67  
        4.1 Point Groups 68  
           4.1.1 Notation of Symmetry Elements 68  
           4.1.2 Classification of Point Groups 72  
        4.2 Space Groups 75  
           4.2.1 Lattices, Translation Group 75  
           4.2.2 Symmorphic and Nonsymmorphic Space Groups 78  
           4.2.3 Site Symmetry, Wyckoff Positions, and Wigner–Seitz Cell 81  
        4.3 Color Groups and Magnetic Groups 85  
           4.3.1 Magnetic Point Groups 85  
           4.3.2 Magnetic Lattices 88  
           4.3.3 Magnetic Space Groups 89  
        4.4 Noncrystallographic Groups, Buckyballs, and Nanotubes 91  
           4.4.1 Structure and Group Theory of Nanotubes 91  
           4.4.2 Buckminsterfullerene C60 95  
     5 Representation Theory 99  
        5.1 Definition of Matrix Representations 100  
        5.2 Reducible and Irreducible Representations 104  
           5.2.1 The Orthogonality Theorem for Irreducible Representations 106  
        5.3 Characters and Character Tables 110  
           5.3.1 The Orthogonality Theorem for Characters 112  
           5.3.2 Character Tables 114  
           5.3.3 Notations of Irreducible Representations 114  
           5.3.4 Decomposition of Reducible Representations 118  
        5.4 Projection Operators and Basis Functions of Representations 121  
        5.5 Direct Product Representations 128  
        5.6 Wigner–Eckart Theorem 136  
        5.7 Induced Representations 139  
     6 Symmetry and Representation Theory in k-Space 149  
        6.1 The Cyclic Born–von Kármán Boundary Condition and the Bloch Wave 149  
        6.2 The Reciprocal Lattice 152  
        6.3 The Brillouin Zone and the Group of the Wave Vector k 153  
        6.4 Irreducible Representations of Symmorphic Space Groups 158  
        6.5 Irreducible Representations of Nonsymmorphic Space Groups 159  
  Part Two Applications in Electronic Structure Theory 165  
     7 Solution of the Schrödinger Equation 167  
        7.1 The Schrödinger Equation 167  
        7.2 The Group of the Schrödinger Equation 169  
        7.3 Degeneracy of Energy States 170  
        7.4 Time-Independent Perturbation Theory 173  
           7.4.1 General Formalism 175  
           7.4.2 Crystal Field Expansion 176  
           7.4.3 Crystal Field Operators 180  
        7.5 Transition Probabilities and Selection Rules 185  
     8 Generalization to Include the Spin 193  
        8.1 The Pauli Equation 193  
        8.2 Homomorphism between SU(2) and SO(3) 194  
        8.3 Transformation of the Spin–Orbit Coupling Operator 196  
        8.4 The Group of the Pauli Equation and Double Groups 199  
        8.5 Irreducible Representations of Double Groups 202  
        8.6 Splitting of Degeneracies by Spin–Orbit Coupling 205  
        8.7 Time-Reversal Symmetry 209  
           8.7.1 The Reality of Representations 209  
           8.7.2 Spin-Independent Theory 210  
           8.7.3 Spin-Dependent Theory 212  
     9 Electronic Structure Calculations 213  
        9.1 Solution of the Schrödinger Equation for a Crystal 213  
        9.2 Symmetry Properties of Energy Bands 214  
           9.2.1 Degeneracy and Symmetry of Energy Bands 216  
           9.2.2 Compatibility Relations and Crossing of Bands 217  
        9.3 Symmetry-Adapted Functions 219  
           9.3.1 Symmetry-Adapted Plane Waves 219  
           9.3.2 Localized Orbitals 221  
        9.4 Construction of Tight-Binding Hamiltonians 226  
           9.4.1 Hamiltonians in Two-Center Form 228  
           9.4.2 Hamiltonians in Three-Center Form 232  
           9.4.3 Inclusion of Spin–Orbit Interaction 240  
           9.4.4 Tight-Binding Hamiltonians from ab initio Calculations 241  
        9.5 Hamiltonians Based on Plane Waves 243  
        9.6 Electronic Energy Bands and Irreducible Representations 246  
        9.7 Examples and Applications 252  
           9.7.1 Calculation of Fermi Surfaces 252  
           9.7.2 Electronic Structure of Carbon Nanotubes 254  
           9.7.3 Tight-binding Real-Space Calculations 256  
           9.7.4 Spin–Orbit Coupling in Semiconductors 261  
           9.7.5 Tight-Binding Models for Oxides 263  
  Part Three Applications in Photonics 267  
     10 Solution of Maxwell's Equations 269  
        10.1 Maxwell's Equations and the Master Equation for Photonic Crystals 270  
           10.1.1 The Master Equation 270  
           10.1.2 One- and Two-Dimensional Problems 272  
        10.2 Group of the Master Equation 273  
        10.3 Master Equation as an Eigenvalue Problem 275  
        10.4 Models of the Permittivity 276  
           10.4.1 Reduced Structure Factors 280  
           10.4.2 Convergence of the Plane Wave Expansion 282  
     11 Two-Dimensional Photonic Crystals 285  
        11.1 Photonic Band Structure and Symmetrized Plane Waves 286  
           11.1.1 Empty Lattice Band Structure and Symmetrized Plane Waves 286  
           11.1.2 Photonic Band Structures: A First Example 289  
        11.2 Group Theoretical Classification of Photonic Band Structures 292  
        11.3 Supercells and Symmetry of Defect Modes 295  
        11.4 Uncoupled Bands 299  
     12 Three-Dimensional Photonic Crystals 303  
        12.1 Empty Lattice Bands and Compatibility Relations 303  
        12.2 An example: Dielectric Spheres in Air 307  
        12.3 Symmetry-Adapted Vector Spherical Waves 309  
  Part Four Other Applications 315  
     13 Group Theory of Vibrational Problems 317  
        13.1 Vibrations of Molecules 317  
           13.1.1 Permutation, Displacement, and Vector Representation 318  
           13.1.2 Vibrational Modes of Molecules 321  
           13.1.3 Infrared and Raman Activity 323  
        13.2 Lattice Vibrations 326  
           13.2.1 Direct Calculation of the Dynamical Matrix 328  
           13.2.2 Dynamical Matrix from Tight-Binding Models 330  
           13.2.3 Analysis of Zone Center Modes 331  
     14 Landau Theory of Phase Transitions of the Second Kind 335  
        14.1 Introduction to Landau's Theory of Phase Transitions 336  
        14.2 Basics of the Group Theoretical Formulation 340  
        14.3 Examples with GTPack Commands 342  
           14.3.1 Invariant Polynomials 342  
           14.3.2 Landau and LifshitzCriterion 343  
  Appendix A Spherical Harmonics 347  
     A.1 Complex Spherical Harmonics 348  
        A.1.1 Definition of Complex Spherical Harmonics 348  
        A.1.2 Cartesian Spherical Harmonics 348  
        A.1.3 Transformation Behavior of Complex Spherical Harmonics 349  
     A.2 Tesseral Harmonics 350  
        A.2.1 Definition of Tesseral Harmonics 350  
        A.2.2 Cartesian Tesseral Harmonics 351  
        A.2.3 Transformation Behavior of Tesseral Harmonics 352  
  Appendix B Remarks on Databases 353  
     B.1 Electronic Structure Databases 353  
        B.1.1 Tight-Binding Calculations 353  
        B.1.2 Pseudopotential Calculations 354  
        B.1.3 Radial Integrals for Crystal Field Parameters 355  
     B.2 Molecular Databases 355  
     B.3 Database of Structures 355  
  Appendix C Use of MPB together with GTPack 357  
     C.1 Calculation of Band Structure and Density of States 357  
     C.2 Calculation of Eigenmodes 358  
     C.3 Comparison of Calculations with MPB and Mathematica 359  
  Appendix D Technical Remarks on GTPack 361  
     D.1 Structure of GTPack 361  
     D.2 Installation of GTPack 362  
  References 365  
  Index 375  
  EULA 382  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz