Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Contact Mechanics
  Großes Bild
 
Contact Mechanics
von: J.R. Barber
Springer-Verlag, 2018
ISBN: 9783319709390
592 Seiten, Download: 15011 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 8  
  1 Kinematics of Contact 19  
     1.1 Reference Frame and the Initial Gap Function 20  
     1.2 Establishment of a Contact Region 21  
        1.2.1 Definition of Contact 22  
        1.2.2 The Boundary Value Problem 22  
        1.2.3 Signorini Problems 23  
        1.2.4 Asymptotic Arguments 23  
        1.2.5 The Discrete Problem 25  
     1.3 Nonlinear Kinematics 26  
     1.4 Almost Conformal Contact 27  
  2 Three-Dimensional Frictionless Elastic Problems 30  
     2.1 The Half-Space Approximation 30  
     2.2 Normal Loading of the Half-Space 31  
        2.2.1 The Point Force Solution 32  
        2.2.2 Similarity, Equilibrium and Anisotropy 33  
        2.2.3 The Composite Elastic Modulus 34  
     2.3 Integral Equation Formulation 35  
        2.3.1 Field-Point Integration 37  
        2.3.2 Indentation by a Flat Elliptical Punch 37  
     2.4 Galin's Theorem 40  
        2.4.1 A Special Case 41  
     2.5 Interior Stress Fields 42  
        2.5.1 In-Plane Stress Components Near the Surface 42  
  3 Hertzian Contact 45  
     3.1 Transformation of Coordinates 45  
        3.1.1 Cylinders and Spheres 47  
        3.1.2 More General Cases 48  
     3.2 Hertzian Pressure Distribution 49  
     3.3 Strategy for Hertzian Contact Calculations 50  
        3.3.1 Eccentricity of the Contact Area 50  
        3.3.2 Dimensions of the Contact Area 51  
        3.3.3 Highly Elliptical Contacts 54  
     3.4 First Yield 55  
  4 More General Problems for the Half-Space 58  
     4.1 The Electrical--Mechanical Analogy 59  
        4.1.1 Other Mathematical Analogies 61  
        4.1.2 Boyer's Approximation 63  
        4.1.3 Fabrikant's Approximation 64  
     4.2 General Theorems for Frictionless Contact 66  
     4.3 Superposition by Differentiation 70  
     4.4 The Force--Displacement Relation 72  
        4.4.1 Non-conformal Contact Problems 73  
  5 Axisymmetric Contact Problems 77  
     5.1 Green and Collins Solution 77  
        5.1.1 The Flat Punch Solution 79  
     5.2 Non-conformal Contact Problems 80  
     5.3 Annular Contact Regions 82  
     5.4 The Non-axisymmetric Cylindrical Punch 83  
     5.5 The Method of Dimensionality Reduction (MDR) 84  
  6 Two-Dimensional Frictionless Contact Problems 90  
     6.1 The Line Force Solution 91  
     6.2 Integral Equation Formulation 93  
        6.2.1 Edge Conditions 94  
     6.3 Incremental Solution of Non-conformal Contact Problems 98  
        6.3.1 Symmetric Problems 98  
        6.3.2 Bounded-Singular Problems 99  
     6.4 Solution by Fourier Series 99  
        6.4.1 Rigid-Body Rotation 100  
        6.4.2 Galin's Theorem, Chebyshev Polynomials and Recurrence Relations 102  
     6.5 Periodic Contact Problems 104  
        6.5.1 Sinusoidal Contact Pressure 104  
        6.5.2 Fourier Series Methods 105  
        6.5.3 The Periodic Green's Function 106  
        6.5.4 The Cotangent Transform 106  
        6.5.5 Manners' Solution 107  
        6.5.6 Westergaard's Problem 109  
     6.6 The Smirnov--Sobolev Transform 110  
        6.6.1 Inversion of the Transform 111  
        6.6.2 Example: Uniform Loading Over the Circle 111  
        6.6.3 Anisotropic Problems 112  
     6.7 Displacements in Two-Dimensional Problems 113  
        6.7.1 Kalker's Line Contact Theory 115  
  7 Tangential Loading 121  
     7.1 Kinematics 121  
        7.1.1 Gross Slip and Microslip 122  
     7.2 Green's Functions for Tangential Forces and Displacements 123  
        7.2.1 Three-Dimensional [point] Loading 123  
        7.2.2 Two-Dimensional [line] Loading 125  
        7.2.3 Normal-Tangential Coupling 126  
     7.3 Two-Dimensional Flat Rigid Punch with No Slip 127  
        7.3.1 Uncoupled Problem 129  
        7.3.2 Oscillatory Singularities 129  
     7.4 Axisymmetric Flat Rigid Punch with No Slip 131  
     7.5 The `Goodman' Approximation 133  
     7.6 Uniform Tangential Displacement in a Prescribed Area 135  
        7.6.1 Tangential Loading over a Circular Area 135  
        7.6.2 Tangential Loading over an Elliptical Area 136  
        7.6.3 Two Conjectures 138  
     7.7 Non-conformal Contact Problems with No Slip 139  
        7.7.1 Uncoupled Hertzian Contact with Tangential Loading 140  
        7.7.2 The Coupled Axisymmetric Problem under Purely Normal Loading 141  
        7.7.3 The Coupled Two-Dimensional Problem 142  
        7.7.4 Relaxation Damping 144  
  8 Friction Laws 149  
     8.1 Amontons' Law 149  
        8.1.1 Continuum Problems 150  
        8.1.2 Two-Dimensional Problems 151  
        8.1.3 Existence and Uniqueness Theorems 151  
     8.2 The Klarbring Model 152  
        8.2.1 General Loading Scenarios 154  
        8.2.2 The Critical Coefficient of Friction 154  
        8.2.3 Wedging 155  
     8.3 Multinode Systems 156  
        8.3.1 The Evolution and Rate Problems 157  
        8.3.2 Algorithms for Two-Dimensional Problems with Time-Varying Forces 157  
        8.3.3 History-Dependence and Memory 158  
        8.3.4 Klarbring's P-Matrix Criterion 159  
     8.4 Periodic Loading 160  
        8.4.1 A Uniqueness Proof for Uncoupled Systems 161  
        8.4.2 Shakedown 163  
        8.4.3 Coupled Systems 163  
        8.4.4 Asymptotic Approach to a Steady State 163  
     8.5 A Simple Continuum Frictional System 164  
        8.5.1 Unloading 167  
        8.5.2 Periodic Loading 168  
        8.5.3 Discrete Model of the Strip Problem 169  
        8.5.4 The Inverse Problem 169  
     8.6 More Complex Friction Laws 170  
        8.6.1 Instabilities During Steady Sliding 171  
        8.6.2 Velocity-Dependent Friction Coefficient 171  
        8.6.3 Stick-Slip Vibrations 173  
        8.6.4 Slip-Weakening Laws 174  
        8.6.5 Rate-State Laws 175  
  9 Frictional Problems Involving Half-Spaces 181  
     9.1 Cattaneo's Problem 181  
     9.2 The Ciavarella--Jäger Theorem 184  
        9.2.1 Three-Dimensional Problems 186  
     9.3 More General Loading Scenarios 187  
        9.3.1 Constant Normal Force 187  
        9.3.2 Variable Normal Force 188  
        9.3.3 Memory and `Advancing Stick' 190  
     9.4 The Effect of Bulk Stress 191  
        9.4.1 Hertz Problem with Superposed Bulk Stress 191  
        9.4.2 Combined Bulk Stress and Tangential Force 193  
     9.5 Coupled Problems 196  
        9.5.1 Indentation by a Two-Dimensional Flat Rigid Punch 196  
        9.5.2 Normal Loading for More General Geometries 199  
        9.5.3 Combined Normal and Tangential Loading 201  
        9.5.4 Unloading 201  
        9.5.5 Periodic Loading 202  
  10 Asymptotic Methods 206  
     10.1 Indentation by a Frictionless Rigid Punch 206  
        10.1.1 Eigenfunction Series 208  
        10.1.2 More General Frictionless Indentation Problems 209  
        10.1.3 Non-conformal Problems 210  
        10.1.4 Both Materials Deformable 211  
     10.2 No-Slip Conditions 212  
     10.3 Frictional Slip 213  
        10.3.1 Slip-Separation Transition 214  
        10.3.2 Slip--Stick Transition 215  
     10.4 Indentation by an Elastic Wedge 216  
        10.4.1 Right-Angle Wedge of the Same Material 217  
        10.4.2 A Slipping Interface 218  
     10.5 Local Fields 219  
        10.5.1 The Flat and Rounded Indenter 220  
        10.5.2 Fretting in Non-conformal Contact 222  
        10.5.3 Edge Slip Zones with a Rigid Punch 223  
        10.5.4 Slip Zones in Conformal Contact 225  
  11 Receding Contact 232  
     11.1 Characteristics of Receding Contact 233  
        11.1.1 Examples of Receding Contact 234  
     11.2 Frictional Problems 237  
        11.2.1 Frictional Unloading 237  
     11.3 Thermoelastic Problems 239  
     11.4 Almost Conformal Contact Problems 240  
  12 Adhesive Forces 244  
     12.1 Adhesion Between Rigid Bodies 247  
     12.2 The JKR Theory 248  
        12.2.1 Axisymmetric Problems 249  
        12.2.2 Indentation by a Sphere 250  
        12.2.3 Energetic Considerations and Stability 252  
        12.2.4 Hysteretic Energy Dissipation 254  
        12.2.5 JKR Solution for More General Axisymmetric Bodies 254  
        12.2.6 Guduru's Problem 256  
     12.3 The Tabor Parameter 257  
        12.3.1 An Adhesive Length Scale 259  
        12.3.2 Limitations on the JKR Solution 260  
     12.4 Solutions for Finite Tabor Parameter 261  
        12.4.1 Jump-In at Large Tabor Parameter 262  
        12.4.2 Simplified Force Laws 263  
        12.4.3 Maugis' Solution 264  
        12.4.4 The `double-Hertz' Approximation 267  
        12.4.5 More General Axisymmetric Geometries 269  
     12.5 Other Geometries 269  
        12.5.1 Two-Dimensional Problems 269  
        12.5.2 Elliptical Contact Area 270  
        12.5.3 General Three-Dimensional Geometries 271  
  13 Beams, Plates, Membranes and Shells 274  
     13.1 Contact of Beams 274  
        13.1.1 A Heavy Beam Lifted from the Ground 276  
        13.1.2 Adhesive Forces 277  
        13.1.3 Piston Ring in a Cylinder 278  
        13.1.4 Two and Three-Dimensional Effects 281  
        13.1.5 Matched Asymptotic Expansions 282  
     13.2 Contact of Plates 285  
        13.2.1 Displacement Due to a Concentrated Point Force 286  
        13.2.2 Indentation by a Rigid Sphere 286  
     13.3 Membrane Effects 288  
        13.3.1 `Membrane Only' Solutions 289  
     13.4 Contact of Shells 292  
     13.5 Implications for Finite Element Solutions 296  
  14 Layered Bodies 300  
     14.1 Esll El: Plate on an Elastic Foundation 301  
        14.1.1 Choice of Foundation Modulus 302  
        14.1.2 Two-Dimensional Problems 302  
        14.1.3 Three-Dimensional Problems 305  
     14.2 Esgg El: Layer on a Rigid Foundation 306  
        14.2.1 Frictionless Unbonded Layer 307  
        14.2.2 Bonded Compressible Layer 309  
        14.2.3 Bonded Incompressible Layer 309  
        14.2.4 Flat Punch Problems 314  
        14.2.5 Frictional Problems 315  
        14.2.6 Effect of Adhesive Forces 315  
     14.3 Winkler Layer on an Elastic Foundation 318  
        14.3.1 Nonlinear Layers 319  
     14.4 Fourier Transform Methods 320  
        14.4.1 Elastic Layer Bonded to a Rigid Foundation 320  
        14.4.2 Multilayered Bodies 324  
     14.5 Functionally Graded Materials 324  
        14.5.1 Exponential Variation of Modulus 325  
        14.5.2 Power-Law Grading 326  
        14.5.3 Linear Variation of Modulus 329  
  15 Indentation Problems 333  
     15.1 The Hardness Test 333  
     15.2 Power-Law Material 334  
        15.2.1 Graded Materials 336  
     15.3 Other Constitutive Laws 337  
  16 Contact of Rough Surfaces 339  
     16.1 Bowden and Tabor's Theory of Friction 339  
        16.1.1 The Ploughing Force 340  
        16.1.2 Plastic Deformation at an Actual Contact 341  
        16.1.3 The Effect of Surface Films 342  
     16.2 Profilometry 343  
        16.2.1 The Bearing Area Curve 344  
        16.2.2 The Contact Problem 346  
     16.3 Asperity Model Theories 347  
        16.3.1 The Exponential Distribution 349  
        16.3.2 The Gaussian Distribution 350  
        16.3.3 The Plasticity Index 352  
     16.4 Statistical Models of Surfaces 353  
        16.4.1 Discrete Models 353  
        16.4.2 Random Process Models 355  
        16.4.3 Determining Asperity Parameters 361  
     16.5 Fractal Surfaces 362  
        16.5.1 Archard's Model 362  
        16.5.2 Self-affine Fractals and the Fractal Dimension 362  
        16.5.3 The Weierstrass Function 364  
        16.5.4 Generating Realizations of Fractal Profiles and Surfaces 366  
     16.6 Contact of Fractal Surfaces 369  
        16.6.1 Majumdar and Bhushan's Theory 369  
        16.6.2 Elastic Contact for a Fractal Surface 370  
        16.6.3 The Weierstrass Profile 372  
        16.6.4 Persson's Theory 374  
        16.6.5 Implications for Coulomb's Law of Friction 378  
     16.7 Adhesive Forces 379  
        16.7.1 Asperity Model Predictions 380  
        16.7.2 The Sinusoidal Profile 381  
        16.7.3 Adhesion of Random Rough Surfaces 384  
     16.8 Incremental Stiffness and Contact Resistance 385  
        16.8.1 Asperity Model Predictions 386  
        16.8.2 Clustering of Actual Contacts 387  
        16.8.3 Bounds on Incremental Stiffness 388  
        16.8.4 Persson's Theory of Incremental Stiffness 390  
        16.8.5 Gaps and Fluid Leakage 391  
     16.9 Finite-Size Effects 392  
        16.9.1 Integral Equation Formulation 393  
        16.9.2 Unit Cells and the Constriction Alleviation Factor 396  
        16.9.3 Contact of Rough Spheres 397  
  17 Thermoelastic Contact 405  
     17.1 Thermoelastic Deformation 406  
        17.1.1 Fourier Transform Solutions 406  
        17.1.2 Steady-State Temperature 407  
        17.1.3 Thermoelastic Distortion Due to a Point Heat Source 408  
        17.1.4 Dundurs' Theorem 409  
        17.1.5 Moving Heat Sources 410  
     17.2 The Axisymmetric Thermoelastic Hertz Problem 411  
        17.2.1 The Heat Conduction Problem 412  
        17.2.2 Thermoelastic Distortion 413  
        17.2.3 Solution of the Contact Problem 413  
     17.3 Existence and Uniqueness 415  
        17.3.1 A One-Dimensional Model 416  
        17.3.2 Effect of a Thermal Interface Resistance 417  
        17.3.3 Imperfect Thermal Contact 419  
        17.3.4 The Hertz Problem Revisited 420  
        17.3.5 Stability 420  
        17.3.6 Contact of Dissimilar Materials 423  
        17.3.7 Two-Dimensional Stability Problems 423  
     17.4 Solidification Problems 425  
     17.5 Frictional Heating 427  
        17.5.1 The Rod Model 429  
        17.5.2 Burton's Stability Analysis 430  
        17.5.3 Out-of-Plane Sliding 431  
        17.5.4 In-Plane Sliding 433  
        17.5.5 Limiting Configurations 435  
        17.5.6 Effect of Geometry 437  
        17.5.7 Numerical Solutions 439  
  18 Rolling and Sliding Contact 443  
     18.1 Rigid-Body Kinematics 443  
        18.1.1 Three-Dimensional Motions 445  
     18.2 Johnson's Belt Drive Problem 448  
     18.3 Tractive Rolling of Elastic Cylinders 451  
        18.3.1 Dissimilar Materials 455  
        18.3.2 Antiplane Loading 456  
        18.3.3 Rolling of Misaligned Cylinders 456  
        18.3.4 Three-Dimensional Rolling Contact Problems 457  
        18.3.5 Kalker's Strip Theory 458  
        18.3.6 The Incipient Sliding Solution 460  
        18.3.7 Transient Problems 460  
        18.3.8 Rail Corrugations 461  
     18.4 Steady Sliding 462  
        18.4.1 Two-Dimensional Problems 462  
        18.4.2 Three-Dimensional Problems 464  
     18.5 Wear 465  
        18.5.1 Archard's Wear Law 465  
        18.5.2 Long-Time Solution 466  
        18.5.3 Transient Problems 467  
        18.5.4 Galin's Eigenfunction Method 469  
        18.5.5 Non-conformal Contact Problems 471  
     18.6 Sliding of Rough Surfaces 472  
        18.6.1 Flash Temperatures 473  
        18.6.2 Bulk Temperatures 478  
        18.6.3 Transient Asperity Interactions 479  
  19 Elastodynamic Contact Problems 484  
     19.1 Wave Speeds 485  
        19.1.1 Rayleigh Waves 486  
     19.2 Moving Contact Problems 487  
        19.2.1 The Moving Line Force 487  
        19.2.2 Integral Equation Formulation 488  
        19.2.3 The Subsonic Problem 489  
        19.2.4 The Speed Range cR 490  
        19.2.5 The Solution of Slepyan and Brun 491  
        19.2.6 The Transonic Solution c2 493  
        19.2.7 The Superseismic Solution V>c1 494  
        19.2.8 Three-Dimensional Problems 496  
     19.3 Interaction of a Bulk Wave with an Interface 499  
        19.3.1 SH-Waves Transmitted Across a Frictional Interface 499  
        19.3.2 In-Plane Waves 505  
     19.4 Interface Waves 507  
        19.4.1 Slip Waves 508  
        19.4.2 Slip Waves at a Sliding Interface 509  
        19.4.3 Slip--Stick Waves 510  
     19.5 Stability of Frictional Sliding 512  
     19.6 Transient Elastodynamic Contact Problems 513  
        19.6.1 Impulsive Line Force 513  
        19.6.2 A Uniform Pressure Suddenly Applied 513  
        19.6.3 Integral Equation Formulation of the Transient Contact Problem 514  
        19.6.4 Normal Indentation by a Rigid Body 515  
        19.6.5 Superseismic Indentation 516  
        19.6.6 Self-Similar Indentation Problems 517  
        19.6.7 Three-Dimensional Transient Problems 518  
  20 Impact 522  
     20.1 Hertz' Theory of Impact 523  
        20.1.1 Duration of the Impact 524  
        20.1.2 Homogeneous Sphere 526  
        20.1.3 Range of Validity of the Theory 526  
        20.1.4 The Superseismic Phase 527  
     20.2 Impact of a Cylinder 528  
     20.3 Oblique Impact 530  
        20.3.1 The Equation of Motion 531  
        20.3.2 The Tangential Contact Problem 532  
        20.3.3 Complete Stick 532  
        20.3.4 Gross Slip 535  
        20.3.5 Partial Slip 535  
        20.3.6 The Complete Trajectory 536  
        20.3.7 Rebound Conditions 537  
     20.4 One-Dimensional Bar Problems 538  
        20.4.1 The Semi-infinite Bar 539  
        20.4.2 The Infinite Bar 540  
        20.4.3 Reflections 541  
        20.4.4 The Impact Problem 542  
        20.4.5 A Rigid Mass Impacting an Elastic Bar 542  
        20.4.6 Frictional Problems 545  
        20.4.7 Continuous Frictional Supports 547  
  Appendix A Potential Function Solutions for Elasticity Problems 551  
     A.1 Frictionless Problems 551  
     A.2 Problems with Tangential Tractions 552  
     A.3 Two-Dimensional Problems 554  
  Appendix B Integrals over Elliptical Domains 555  
     B.1 Mathematical Preliminaries 556  
        B.1.1 The Singular Field n=0 557  
        B.1.2 The Hertzian Field n=1 557  
     B.2 Applications 558  
        B.2.1 Normal Loading of an Isotropic Half-Space 558  
        B.2.2 The Anisotropic Half-Space 559  
        B.2.3 Tangential Loading of an Isotropic Half-Space 559  
     B.3 Evaluation of Integrals 561  
  Appendix C Cauchy Singular Integral Equations 562  
     C.1 Integral Equations of the First Kind 562  
     C.2 Integral Equations of the Second Kind 564  
  Appendix D Dundurs' Bimaterial Constants 566  
  References 568  
  Index 588  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz