Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Bioremediation: Applications for Environmental Protection and Management
  Großes Bild
 
Bioremediation: Applications for Environmental Protection and Management
von: Sunita J. Varjani, Avinash Kumar Agarwal, Edgard Gnansounou, Baskar Gurunathan
Springer-Verlag, 2017
ISBN: 9789811074851
418 Seiten, Download: 6500 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 9  
  Editors and Contributors 11  
  1 Introduction to Environmental Protection and Management 17  
     Abstract 17  
  2 Mathematical Modeling in Bioremediation 23  
     2.1 Basics of Flow of Groundwater and Transport of Contaminants 24  
        2.1.1 Introduction 24  
        2.1.2 Concepts of Groundwater 26  
        2.1.3 Concepts of Contaminant Transport Processes 31  
        2.1.4 Other Terminologies 35  
     2.2 Model Equations for Bioremediation 35  
        2.2.1 Theory 35  
        2.2.2 Analytical Models 38  
     2.3 Recent Advances in Mathematical Modeling in Bioremediation 39  
     References 42  
  3 Evaluation of Next-Generation Sequencing Technologies for Environmental Monitoring in Wastewater Abatement 44  
     Abstract 44  
     3.1 Introduction 45  
     3.2 Wastewater Treatment Mechanism 47  
        3.2.1 Biological Wastewater Treatment 48  
        3.2.2 Types of Microbes in Wastewater Treatment Plant 48  
        3.2.3 Water Quality Analysis 50  
     3.3 Infrastructure of Wastewater Treatment Plant 51  
        3.3.1 Drinking Water Distribution System 51  
        3.3.2 Types of Water Sampling 52  
           3.3.2.1 Bulk Water Sampling 52  
           3.3.2.2 Biofilm Water Sampling 53  
     3.4 Microbiological Techniques 53  
        3.4.1 Microbial Detection and Enumeration 54  
           3.4.1.1 Culture-Dependent Techniques 54  
           3.4.1.2 Culture-Independent Techniques 55  
           3.4.1.3 Fluorescent in situ Hybridization (FISH) 55  
           3.4.1.4 Flow Cytometry (FC) 56  
           3.4.1.5 PCR-Based Methods 57  
        3.4.2 Microbial Community Composition 58  
           3.4.2.1 Phospholipid Fatty Acids 58  
           3.4.2.2 Bioinformatic Tools 58  
           3.4.2.3 Fingerprinting Techniques 59  
           3.4.2.4 Terminal Restriction Fragment Length Polymorphism (TeRFLP) 60  
           3.4.2.5 Amplified Ribosomal DNA Restriction Analysis (ARDRA) 60  
           3.4.2.6 Automated Ribosomal Intergenic Spacer Analysis (ARISA) 60  
        3.4.3 Sequencing-Based Approaches 60  
     3.5 Next-Generation Sequencing 61  
        3.5.1 Stable Isotope Probing (SIP) Technique 62  
        3.5.2 Challenges in NGS 63  
        3.5.3 NGS Technologies and Analysis Methods 63  
        3.5.4 Limitations in NGS 64  
        3.5.5 Application of NGS in Water Quality Analysis 64  
        3.5.6 Microbial Safety of Drinking Water 65  
     References 66  
  4 Genetically Modified Organisms and Its Impact on the Enhancement of Bioremediation 68  
     Abstract 68  
     4.1 Introduction 69  
        4.1.1 Bioremediation 69  
        4.1.2 Types of Bioremediation 70  
           4.1.2.1 In Situ Bioremediation 70  
           4.1.2.2 Intrinsic In Situ Bioremediation 70  
           4.1.2.3 Ex Situ Bioremediation 71  
     4.2 Genetically Modified Microorganisms and Its Application in Bioremediation 72  
        4.2.1 Factors Influencing Genetically Engineered Microorganisms 75  
        4.2.2 Strategies to Control GEMs Transfer 77  
           4.2.2.1 Mini-transposon-mediated GEM Transfer Control 77  
           4.2.2.2 Suicide Genes-mediated GEM Transfer Control 77  
           4.2.2.3 gef Gene Expression and GEM Transfer Control 77  
           4.2.2.4 Composting and GEM Transfer Control 78  
        4.2.3 Techniques to Identify Genetically Modified Microbes 78  
           4.2.3.1 PCR-based Techniques 78  
           4.2.3.2 Fluorescent-based DNA Hybridization Technique 78  
           4.2.3.3 Bioluminescence-mediated Technique 79  
           4.2.3.4 DNA Microarray Technique 79  
     4.3 Molecular Tools for Construction of Genetic Engineering of Microbes for Bioremediation 79  
        4.3.1 Molecular Cloning 79  
        4.3.2 Electroporation 80  
        4.3.3 Protoplast Transformation 80  
        4.3.4 Biolistic Transformation 82  
     4.4 Genetically Modified Microorganisms for Bioremediation Purposes 82  
        4.4.1 GMOs in Removal of Toxic Heavy Metals 82  
        4.4.2 GMOs in Phytoremediation 83  
     4.5 Pros and Cons of Genetically Engineering Organisms 84  
        4.5.1 The Pros 84  
        4.5.2 The Cons 85  
     4.6 Ethical Issues and Risk Assessments in Usage of GMOs in Bioremediation 85  
     4.7 Conclusion 88  
     References 88  
  5 Integration of Lignin Removal from Black Liquor and Biotransformation Process 92  
     Abstract 92  
     5.1 Introduction 93  
     5.2 Structure of Lignin 93  
     5.3 Lignin Isolation Processes 96  
        5.3.1 Kraft Lignin 96  
        5.3.2 Lignosulfonate Lignin 97  
        5.3.3 Soda Lignin 97  
        5.3.4 Organosolv Lignin 98  
        5.3.5 Steam Explosion Lignin 98  
        5.3.6 Ionic Liquid Lignin 99  
     5.4 Physicochemical Properties of Lignin 99  
     5.5 Lignin: Recent Advances Applications 100  
        5.5.1 Lignin for Power-Fuel Gas Production 100  
        5.5.2 Lignin for Macromolecule Synthesis 100  
        5.5.3 Fine Chemical Synthesis 101  
     5.6 Lignin Removal in Paper and Pulp Industry 102  
        5.6.1 Lignin Removal by Coagulation Process 102  
        5.6.2 Lignin Precipitation by Acidification Process 103  
        5.6.3 Electrocoagulation Process 103  
     5.7 Biodegradation and Bioremediation of Lignin 105  
        5.7.1 Bacteria 106  
        5.7.2 Algae 107  
        5.7.3 Soft-Rot Fungi 108  
        5.7.4 Microfungi or Molds 108  
           5.7.4.1 Brown-Rot and White-Rot Basidiomycetes 108  
     References 109  
  6 Role of Nanofibers in Bioremediation 113  
     Abstract 113  
     6.1 Introduction 113  
     6.2 Nanofibers 115  
     6.3 Electrospinning 115  
     6.4 Biohybrid Nanofibers 116  
     6.5 Immobilization 117  
     6.6 Types of Microorganism Immobilizations 118  
        6.6.1 Adsorption 118  
        6.6.2 Covalent Binding/Cross-Linking 119  
        6.6.3 Entrapment 119  
        6.6.4 Encapsulation 119  
     6.7 Fabrication of Biohybrid Nanofibers 120  
        6.7.1 Monolithic Nanofibers 120  
        6.7.2 Core–Shell Nanofibers 121  
     6.8 Biohybrid Nanofibers for Bioremedial Applications 122  
        6.8.1 Nanofibers on Dye Removal 122  
        6.8.2 Nanofibers on Atrazine Removal 123  
        6.8.3 Nanofibers on Chromium Removal 124  
        6.8.4 Nanofibers on Nitrate and Ammonium Removal 124  
        6.8.5 Nanofibers on Heavy Metal Removal 125  
     6.9 Analysis of Advantages–Disadvantages 125  
     6.10 Conclusion 126  
     References 126  
  7 Bioremediation of Industrial Wastewater Using Bioelectrochemical Treatment 129  
     Abstract 129  
     7.1 Introduction 129  
     7.2 Organic Matter Removal Using Different System 130  
     7.3 Metal Removal Using Bioelectrochemical System 131  
        7.3.1 Metal Ions Using Abiotic Cathode System in MFC 133  
        7.3.2 Metal Removal Using Abiotic Cathode in MEC 134  
        7.3.3 Metal Ion Removal and Recovery Using Biocathode MFC System 135  
        7.3.4 Metal Ion Removal and Recovery Using Biocathode MEC System 136  
     7.4 Conclusion 137  
     References 137  
  8 Biosorption Strategies in the Remediation of Toxic Pollutants from Contaminated Water Bodies 141  
     Abstract 141  
     8.1 Introduction 142  
     8.2 Potential of Biosorption 145  
     8.3 Biosorption and the Pollutants 147  
        8.3.1 Biosorption and Heavy Metal 147  
        8.3.2 Biosorption and Dyes 152  
        8.3.3 Biosorption and Phenol 153  
        8.3.4 Biosorption and Radioactive Waste 154  
     8.4 Factors Consideration in Biosorption Process 154  
        8.4.1 Cost of Biosorbents 154  
        8.4.2 Biosorbent Regeneration 155  
        8.4.3 Biosorbent Immobilization 155  
        8.4.4 Charge of Biomass 156  
        8.4.5 Biosorption Process Design 157  
     8.5 Biomass Types 157  
        8.5.1 Biosorption Using Algae 161  
        8.5.2 Biosorption Using Bacteria 163  
        8.5.3 Biosorption Using Fungi 163  
        8.5.4 Biosorbents from Agricultural Waste 165  
        8.5.5 Biosorption from Industrial Waste 166  
     8.6 Application of Biosorbents 166  
     8.7 Conclusion 167  
     References 167  
  9 Bioremediation of Heavy Metals 178  
     Abstract 178  
     9.1 Introduction 179  
     9.2 Heavy Metal-Polluted Environments 179  
        9.2.1 Types of Heavy Metals and Their Toxicity 181  
           9.2.1.1 Arsenic 181  
           9.2.1.2 Lead 181  
           9.2.1.3 Zinc 182  
           9.2.1.4 Cadmium 182  
           9.2.1.5 Copper 182  
           9.2.1.6 Chromium 183  
           9.2.1.7 Mercury 184  
           9.2.1.8 Silver 184  
           9.2.1.9 Gold 185  
           9.2.1.10 Nickel 185  
           9.2.1.11 Selenium 186  
           9.2.1.12 Uranium 186  
     9.3 Bioremediation 187  
        9.3.1 Principle of Bioremediation 187  
        9.3.2 Types of Bioremediation 188  
           9.3.2.1 In Situ Bioremediation 188  
              Types of In Situ Bioremediation 188  
              Advantages and Disadvantages of In Situ Bioremediation 190  
           9.3.2.2 Ex Situ Bioremediation 190  
              Type of Ex Situ Bioremediation 190  
              Advantages and Disadvantages of Ex Situ Bioremediation 192  
        9.3.3 Factor Affecting Bioremediation 192  
           9.3.3.1 Microbial Populations for Bioremediation 192  
           9.3.3.2 Chemical Factors 193  
              Bioavailability of Pollutants 193  
              Biodegradability of Pollutants 193  
           9.3.3.3 Environmental Factors 193  
              Temperature 193  
              pH 194  
              Nutrients 194  
              Moisture Content and Water Availability 194  
        9.3.4 Bioremediation of Heavy Metals by Microorganism 194  
           9.3.4.1 Mechanisms 196  
        9.3.5 Bioremediation of Heavy Metals by Plants 197  
           9.3.5.1 Mechanisms of Bioremediation by Plants 197  
              Phytoextraction 197  
              Phytostabilization 199  
              Rhizofiltration 199  
              Phytovolatilization 200  
        9.3.6 Bioremediation of Heavy Metals by Algae 200  
           9.3.6.1 Mechanisms 201  
        9.3.7 Bioreactors 201  
           9.3.7.1 Stirred Tank Bioreactor (STRs) 202  
           9.3.7.2 Fluidized Bed Bioreactor (FBRs) 202  
           9.3.7.3 Airlift Reactors (ALRs) 202  
           9.3.7.4 Fixed-Bed Bioreactors (FXRs) 202  
           9.3.7.5 Rotating Biological Bioreactor (RBC) 203  
     9.4 Recent Trends 203  
        9.4.1 Application of Genetic Engineering 203  
           9.4.1.1 Genetically Modified Microorganisms 203  
           9.4.1.2 Genetically Modified Plants 204  
        9.4.2 Rhizosphere Engineering 204  
        9.4.3 Application of Nanotechnology 205  
        9.4.4 Effect of Plant–Microbe Symbiosis 206  
     9.5 Conclusion 206  
     References 206  
  10 Pesticides Bioremediation 209  
     Abstract 209  
     10.1 Introduction and General Overview 210  
     10.2 Pesticides 211  
     10.3 Different Categories of Pesticides 212  
        10.3.1 Organochlorine Pesticides 212  
           10.3.1.1 DDT 214  
           10.3.1.2 Lindane 214  
           10.3.1.3 Chlordane 215  
           10.3.1.4 Endosulfan 215  
        10.3.2 Organophosphate Pesticides 216  
           10.3.2.1 Chlorpyrifos 216  
           10.3.2.2 Methyl Parathion 217  
        10.3.3 Carbamates 217  
           10.3.3.1 Carbaryl 218  
     10.4 Risk Correlated with Pesticides 218  
        10.4.1 Threats to Human Health 219  
        10.4.2 Threats to Plants 220  
        10.4.3 Threats to Aquatic System 220  
        10.4.4 Threats to Soil 221  
     10.5 Bioremediation History 221  
     10.6 Classes of Bioremediation 222  
        10.6.1 In Situ Process 222  
        10.6.2 Ex Situ Process 222  
     10.7 Bioremediation of Pesticides 223  
     10.8 Upside of Bioremediation 223  
     10.9 Downside of Bioremediation 224  
     10.10 Strategies of Pesticides Bioremediation 224  
        10.10.1 Involvement of Microbes in Bioremediation of Pesticides 224  
           10.10.1.1 Bacterial Bioremediation 225  
           10.10.1.2 Mycoremediation 227  
           10.10.1.3 Phycoremediation 228  
        10.10.2 Phytoremediation of Pesticides 229  
     10.11 Future Recommendations 230  
     10.12 Conclusion 231  
     References 231  
  11 Application of Microbes in Remediation of Hazardous Wastes: A Review 235  
     Abstract 235  
     11.1 Introduction 236  
     11.2 Remediation Methods 238  
        11.2.1 Physicochemical Methods 238  
        11.2.2 Biological Methods 239  
     11.3 Bioremediation Processes: Two Main Categories 239  
        11.3.1 In situ Bioremediation 239  
        11.3.2 Ex situ Bioremediation 239  
     11.4 Microbial Application for the Bioremediation of Hazardous Wastes 240  
        11.4.1 Bacterial Treatment of Wastes 240  
        11.4.2 Algal Treatment of Hazardous Wastes 240  
        11.4.3 Fungal Treatment of Hazardous Wastes 241  
     11.5 Degradation of Hazardous Waste Using Microbial Consortia 243  
     11.6 Mechanism of Bioremediation 243  
     11.7 Factors Affecting Bioremediation 244  
     11.8 Waste Valorization 246  
     11.9 Advantages and Disadvantages of Bioremediation 247  
     11.10 Hazardous Waste Management 248  
     11.11 Conclusion 249  
     Acknowledgements 249  
     References 249  
  12 Phytoremediation Techniques for the Removal of Dye in Wastewater 254  
     Abstract 254  
     12.1 Introduction 255  
        12.1.1 Phytoremediation 256  
     12.2 Mechanisms of Phytoremediation 257  
     12.3 Phytoremediation Process 257  
        12.3.1 Selection of Plants for Remediation of Textile Dyes 258  
        12.3.2 Phytoremediation of Textile Dyes 259  
     12.4 Removal of Azo Dyes 261  
     12.5 Advantages of Phytoremediation 261  
     References 261  
  13 Phenol Degradation from Industrial Wastewater by Engineered Microbes 264  
     Abstract 264  
     13.1 Introduction 264  
     13.2 Manifestation of Phenol Pollution 269  
        13.2.1 Aromatic Alcohol 270  
     13.3 Phenolic Compounds Toxicity Data 271  
        13.3.1 Deleterious Effects on Ecosystem 272  
        13.3.2 Impact and Fate of Phenolic Compounds on Humans 274  
     13.4 Biodegradation of Phenols 275  
        13.4.1 Genetic Engineering in Biodegradation 277  
     13.5 Engineered Plasmids for Phenol Treatment 280  
     13.6 Risk Assessment in Genetic Engineering 282  
     13.7 Regulatory Affairs 283  
     13.8 Conclusions 283  
     References 284  
  14 Insect Gut Bacteria and Their Potential Application in Degradation of Lignocellulosic Biomass: A Review 288  
     Abstract 288  
     14.1 Introduction 288  
     14.2 Insect Gut Environment 290  
     14.3 Microbial Colonization Within Insect Gut 291  
     14.4 Insect Gut Microbial Composition 291  
        14.4.1 According to Diet 293  
        14.4.2 Role in Partner Selection 294  
        14.4.3 Genome Evolution 295  
     14.5 Lignocellulose as a Component: Physiological Property 296  
     14.6 Enzymatic Breakdown of Lignocellulose 297  
     14.7 Cellulosomes Complex 298  
     14.8 Biotechnological Application of Cellulase Enzyme 299  
        14.8.1 In Waste Management 300  
        14.8.2 Food and Brewage Industry 300  
        14.8.3 Ethanol Production from Lignocellulosic Biomasses 300  
        14.8.4 Pulp and Paper Industry 302  
        14.8.5 Textile Industry 302  
     14.9 Conclusion 303  
     Acknowledgements 303  
     References 303  
  15 Bioremediation of Volatile Organic Compounds in Biofilters 311  
     Abstract 311  
     15.1 Introduction 312  
        15.1.1 Air Pollution 312  
        15.1.2 Effect of Volatile Organic Compounds 314  
        15.1.3 Environmental and Health Hazards 314  
        15.1.4 VOCs Removal Techniques by Non-biological and Biological Methods 318  
     15.2 Degradation of VOCs Using Microorganisms 322  
        15.2.1 Biodegradation of VOCs Using Pure Culture 323  
           15.2.1.1 Biodegradation of VOCs Using Bacteria 323  
           15.2.1.2 Biodegradation of VOCs Using Fungi 324  
        15.2.2 Biodegradation of VOCs Using Mixed Culture 327  
     15.3 Biofilters 327  
        15.3.1 Type of Bioreactors Employed for Toluene Removal 331  
           15.3.1.1 Biotrickling Bioreactor (BTBR) 332  
           15.3.1.2 Bioscrubber Bioreactor (BSBR) 333  
           15.3.1.3 Two-Phase Partitioning Bioreactor (TPPB) 334  
           15.3.1.4 Fluidized Bed Bioreactor (FBR) 334  
           15.3.1.5 Fixed Film Bioreactor (FFBR) 335  
           15.3.1.6 Upflow Packed Bed Reactor (UFPBR) 335  
           15.3.1.7 Foam Emulsion Bioreactor (FEBR) 335  
           15.3.1.8 Membrane Bioreactor (MBR) 336  
        15.3.2 Packing Materials 336  
        15.3.3 Suggestions and Future Scope of Work 337  
     15.4 Summary 337  
     References 338  
  16 Bioremediation of Industrial and Municipal Wastewater Using Microalgae 341  
     Abstract 341  
     16.1 Introduction 342  
     16.2 Bioremediation 343  
     16.3 Phycoremediation 344  
     16.4 Microalgae in Wastewater Treatment 346  
     16.5 Methodology 347  
        16.5.1 Microalgae Wastewater Treatment in Waste Stabilization Ponds (WSP) 347  
        16.5.2 Facultative Ponds 348  
        16.5.3 High-Rate Algal Ponds (HRAPs) 349  
        16.5.4 Cell Immobilization 350  
        16.5.5 Use of Strains with Special Attributes 351  
     16.6 Bioreactor Design 352  
        16.6.1 Open Raceway Ponds 352  
        16.6.2 Photobioreactor 353  
        16.6.3 Activated Sludge Process 354  
     16.7 Harvesting Strategy 355  
     16.8 Advantage—Dual Role of Microalgae 356  
     16.9 Nonfuel Applications 356  
     16.10 Fuel-Based Applications 356  
     16.11 Applications 357  
        16.11.1 Treating Municipal Wastewater 357  
        16.11.2 Treating Food Processing Industrial Wastewater 358  
        16.11.3 Treating Paper Industrial Wastewater 359  
        16.11.4 Treating Agro-Industrial Wastes 359  
     16.12 Cost Analysis 360  
     16.13 Additional Features 361  
     16.14 Challenges 361  
     16.15 Summary 363  
     References 364  
  17 Phytoremediation of Textile Dye Effluents 368  
     Abstract 368  
     17.1 Introduction 369  
     17.2 Characterization of Textile Effluents (Source and its Characterization) 369  
        17.2.1 Textile Effluents 369  
        17.2.2 Characteristics of Textile Effluents 370  
        17.2.3 Adsorption 370  
        17.2.4 Flocculation 371  
        17.2.5 Microbial Treatment 371  
           17.2.5.1 Factors Affecting Color Removal Using Microbes 372  
     17.3 Phytoremediation 373  
     17.4 Mechanisms of Phytoremediation 373  
        17.4.1 Phytoextraction 373  
        17.4.2 Phytostabilisation 375  
        17.4.3 Rhizofiltration 375  
        17.4.4 Phytovolatilization 375  
        17.4.5 Phytodegradation or Phytotransformation 376  
        17.4.6 Rhizodegradation/Phytostimulation 376  
        17.4.7 Biotransformation of Pollutants by Plants 377  
     17.5 Factors Affecting the uptake Mechanisms of Contaminants in Phytoremediation 377  
     17.6 Characterization of the Textiles Dyes and Effluents After Phytoremediation 378  
     17.7 Toxicity Analysis of Dye Products in Dye Effluents (Kabra et al. 2013) 379  
     17.8 Various Physiochemical Factors Affecting the Phytoremediation of Textile Dyes and Effluents (Pilon-Smits 2005) 379  
     17.9 Advantages Of Phytoremediation 379  
     17.10 Disadvantages of Phytoremediation 380  
     17.11 Conclusions 380  
  18 Role of Biosurfactants in Enhancing the Microbial Degradation of Pyrene 383  
     Abstract 383  
     18.1 Introduction 383  
     18.2 Occurrence and Physical Properties of Pyrene 384  
     18.3 Toxic Effects Caused Due to Pyrene Exposure 385  
     18.4 Pyrene Degradation by Single Microbial Species and Microbial Consortium 386  
     18.5 Pyrene Degradation Pathway by Microbes 389  
     18.6 Surfactant-Enhanced Degradation of Pyrene 389  
     18.7 Conclusions and Future Scope 391  
     References 391  
  19 Bioremediation of Nitrate-Contaminated Wastewater and Soil 395  
     Abstract 395  
     19.1 Introduction 396  
     19.2 Sources of Nitrate-Contaminated Wastewater 396  
     19.3 Environmental and Health Concerns Due to Nitrate Contamination 397  
     19.4 Technologies Available for Nitrate Removal 397  
     19.5 Biological Denitrification 398  
     19.6 Heterotrophic and Autotrophic Denitrification 400  
     19.7 Suspended Growth Process and Fixed Film Process 401  
     19.8 Denitrification Microbiology 402  
     19.9 Organic Compounds for Denitrification 402  
     19.10 Factors Affecting Nitrate Removal Efficiency 404  
        19.10.1 Effect of Hydraulic Residence Time (HRT) 404  
        19.10.2 Effect of Temperature 404  
        19.10.3 Effect of Grain Size 405  
        19.10.4 Effect of Dissolved Oxygen (DO) 405  
        19.10.5 Effect of Initial Nitrate Concentration (C0) 406  
        19.10.6 Effect of Salinity 406  
        19.10.7 Effect of PH 407  
        19.10.8 Effect of Other Trace Elements 407  
        19.10.9 Effect of Free Ammonia Concentration 407  
     19.11 Reactors for Denitrification 407  
     19.12 Limitations of Denitrification 411  
     19.13 Denitrification in Soil 412  
     19.14 Future Scope 413  
     19.15 Summary 414  
     References 414  
  Author Index 418  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz