Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Anisotropic and Shape-Selective Nanomaterials - Structure-Property Relationships
  Großes Bild
 
Anisotropic and Shape-Selective Nanomaterials - Structure-Property Relationships
von: Simona E. Hunyadi Murph, George K. Larsen, Kaitlin J. Coopersmith
Springer-Verlag, 2017
ISBN: 9783319596624
471 Seiten, Download: 17810 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 8  
  About the Editors 10  
  Introduction and Fundamentals 12  
  1 An Introduction to Nanotechnology 13  
     Abstract 13  
     References 15  
  2 Nanoscale Materials: Fundamentals and Emergent Properties 16  
     Abstract 16  
     2.1 Introduction 16  
        2.1.1 Dimensionality and Optical Properties 17  
        2.1.2 Polarization and Anisotropy 21  
        2.1.3 Crystalline Anisotropy 24  
        2.1.4 Anisotropic Nanoparticle Structures 27  
           2.1.4.1 Spheres 28  
           2.1.4.2 Rods, Wires and Tubes 29  
           2.1.4.3 Cubes, Hexagons, Triangles 30  
           2.1.4.4 Branched and Other Shapes 31  
     2.2 Conclusions 33  
     References 33  
  3 Synthetic Strategies for Anisotropic and Shape-Selective Nanomaterials 38  
     Abstract 38  
     3.1 Introduction 38  
        3.1.1 Bottom-Up Fabrication: The Chemical Approach 40  
           3.1.1.1 Overview 40  
           3.1.1.2 Chemical Reduction 41  
           3.1.1.3 Seed Mediated Approach 43  
        3.1.2 Solvothermal and Hydrothermal Synthesis 55  
           3.1.2.1 Microwave Irradiation 55  
        3.1.3 Self-assembly 56  
     3.2 Top-Down Fabrication: The Engineering Approach 59  
        3.2.1 Overview 59  
        3.2.2 Nano-Lithography 60  
           3.2.2.1 Photolithography 60  
           3.2.2.2 Scanning Beam Lithography 62  
           3.2.2.3 Scanning Probe Lithography 64  
        3.2.3 Pattern Transfer and Templates 65  
           3.2.3.1 Nanosphere Lithography 66  
           3.2.3.2 Spontaneously and Naturally Occurring Templates 67  
        3.2.4 Thin Film Growth 68  
           3.2.4.1 Physical Vapor Deposition 68  
           3.2.4.2 Chemical Vapor Deposition 69  
     3.3 Classification 71  
        3.3.1 Metal and Metal Oxides 71  
        3.3.2 Semiconductor Nanostructures 74  
        3.3.3 Hybrid Nanostructures 75  
        3.3.4 Carbon Nanostructures 76  
     3.4 Conclusions 77  
     References 78  
  4 Characterization of Anisotropic and Shape-Selective Nanomaterials: Methods and Challenges 87  
     Abstract 87  
     4.1 Overview 87  
     4.2 Structural and Chemical Characterization 88  
        4.2.1 Microscopy 88  
        4.2.2 Diffraction and Scattering Techniques 91  
           4.2.2.1 Dynamic Light Scattering 91  
           4.2.2.2 X-ray Scattering and Diffraction 92  
           4.2.2.3 Electron Diffraction 94  
        4.2.3 Spectroscopic Techniques 95  
           4.2.3.1 Optical Spectroscopy 96  
           4.2.3.2 Polarization-Dependent Measurements 98  
           4.2.3.3 Other Spectroscopies 101  
     4.3 “Bulk” Property Characterization 101  
     4.4 Conclusion 103  
     References 103  
  Effect of the Morphology and the Nanometric Dimension of Materials on Their Physico-Chemical Properties 110  
  5 Anisotropic Metallic and Metallic Oxide Nanostructures-Correlation Between Their Shape and Properties 111  
     Abstract 111  
     5.1 Sensing and Optical Imaging 111  
        5.1.1 Sensing via Inelastic Light Scattering-Surface-Enhanced Raman Scattering 113  
        5.1.2 Sensing Based on Surface-Enhanced Fluorescence (SEF) 118  
        5.1.3 Sensing Based on Nanoparticle’s Aggregation-Colorimetric Sensors 120  
        5.1.4 Sensing Based on Plasmon Shifts with Local Refractive Index 122  
     5.2 Medical and Biological Applications 123  
        5.2.1 Metallic Nanostructures 124  
        5.2.2 Non-metallic Nanostructures 129  
     5.3 Catalysis and Electrocatalysis 130  
     5.4 Environmental Applications 134  
        5.4.1 Detection and Sequestration of Environmental Contaminants 135  
        5.4.2 Detection and Destruction of Environmental Contaminants 136  
     5.5 Energy Related Applications 139  
        5.5.1 Conversion of Solar Energy to Fuel 139  
        5.5.2 Energy Storage Materials 144  
     5.6 Photothermal Applications 145  
     5.7 Self-assembled Nanostructures 147  
     5.8 Conclusions 150  
     References 150  
  6 Putting Nanoparticles to Work: Self-propelled Inorganic Micro- and Nanomotors 158  
     Abstract 158  
     6.1 Introduction 158  
     6.2 Synthetic Nanomotor Design 161  
        6.2.1 Synthesis and Characterization 161  
        6.2.2 Efficiency 162  
     6.3 Propulsion Routes 163  
        6.3.1 External Propulsion 163  
           6.3.1.1 Acoustic 163  
           6.3.1.2 Optical 165  
           6.3.1.3 Magnetic 166  
        6.3.2 Chemical Propulsion 166  
           6.3.2.1 Diffusiophoresis 167  
           6.3.2.2 Bubble Propulsion 169  
        6.3.3 Multiple Energy Sources 170  
        6.3.4 Conclusions and Future Outlook 171  
     References 171  
  7 Prospects for Rational Control of Nanocrystal Shape Through Successive Ionic Layer Adsorption and Reaction (SILAR) and Related Approaches 174  
     Abstract 174  
     7.1 Overview 175  
     7.2 Influence of Shape on Electronic Properties of Colloidal Nanocrystals 176  
     7.3 Mechanisms of Anisotropic Growth and Erosion 178  
     7.4 Enforcing Isotropic Growth with Alternating Layer Approaches 182  
     7.5 Methods 184  
        7.5.1 Colloidal SILAR (Homogeneous Solution) 184  
        7.5.2 Colloidal “Atomic Layer Deposition” 185  
     7.6 Precursors 186  
     7.7 Analysis of the SILAR Mechanism in Colloidal NC Processes 194  
        7.7.1 Dose Dependence in c-SILAR 197  
        7.7.2 Solvent Dependence of Precursor Conversion in c-SILAR 200  
        7.7.3 Electrochemical In Situ Monitoring 204  
        7.7.4 XPS Monitoring 205  
     7.8 Rational Construction of Anisotropic Colloidal Nanocrystals with Alternating Layer Approaches 206  
     7.9 Alternating Layer Growth on Supported Nanostructures 207  
     7.10 Alternating Layer Growth on Anisotropic Colloidal Nanocrystal Cores 210  
        7.10.1 Wurtzite Nanorods 211  
        7.10.2 Colloidal Nanoplatelets with Wurtzite Structure 214  
        7.10.3 Colloidal Nanoplatelets with Zincblende Structure 215  
        7.10.4 Colloidal Nanowires 216  
     7.11 Regioselective Growth Under SILAR Conditions 218  
        7.11.1 Regioselective Growth Under Saturating Conditions 219  
        7.11.2 Shape Control Via Reagent Dosing 219  
     7.12 Applications 221  
        7.12.1 Double Quantum Dots and Related Dual-Emission Structures for Temperature Measurement and Upconversion 222  
        7.12.2 Cell Membrane Voltage Sensing 223  
        7.12.3 Fluorescence Anisotropy in 1D and 2D Nanocrystals 224  
     7.13 Concluding Remarks 226  
     References 227  
  8 Plasmon Drag Effect. Theory and Experiment 238  
     Abstract 238  
     8.1 Introduction 238  
     8.2 Experiment 243  
        8.2.1 Photoinduced Electric Effects in Flat Metal Films 243  
        8.2.2 Experiment. PLDE in Nanostructured Films 246  
        8.2.3 Effect of Highly Nonhomogeneous Illumination 250  
     8.3 PLDE Theory 252  
        8.3.1 Macroscopic Forces Acting on Polarized Matter 252  
        8.3.2 The Quantum Aspect of Relationship Between PLDE Emf and Absorption 254  
        8.3.3 Kinetic Renormalization of PLDE 254  
        8.3.4 PLDE in Flat Metal Films in Kretschmann Geometry 256  
        8.3.5 PLDE in Metal Films of Modulated Profile 259  
        8.3.6 PLDE in Nanostructures 261  
           8.3.6.1 SPIDEr in Metal Nanowires 263  
              SPIDEr as a THz Source 264  
              SPIDEr as a Femtosecond Detector 267  
           8.3.6.2 “Batteries” Model Based on Nonlinearity of Metal and Asymmetric Boundary Conditions 268  
     8.4 Conclusions 270  
     References 270  
  9 Dimensional Variations in Nanohybrids: Property Alterations, Applications, and Considerations for Toxicological Implications 276  
     Abstract 276  
     9.1 Introduction 277  
     9.2 Dimensional Variations in Nanohybrids: Altered Properties and Applications 278  
     9.3 Nano-Bio Interactions of Nanohybrids: Importance of Dimensionality 285  
     9.4 Environmental and Toxicological Significance 290  
     9.5 Conclusions 290  
     Acknowledgements 291  
     References 291  
  10 Assemblies and Superstructures of Inorganic Colloidal Nanocrystals 297  
     Abstract 297  
     10.1 Introduction 297  
     10.2 Forces at Nanoscale 299  
        10.2.1 Van der Waals Interactions 300  
           10.2.1.1 Examples of Nanoparticle Self-assemblies 301  
        10.2.2 Induced Self-assembly 301  
        10.2.3 Electrostatic Interactions 303  
           10.2.3.1 Examples of Self-assembly of Nanoparticles 303  
        10.2.4 Magnetic Interactions 304  
        10.2.5 Superficial Forces 307  
     10.3 The Functionality of Nanoparticle Superstructures 307  
        10.3.1 Mechanical Strength 308  
        10.3.2 Photoluminescence 309  
        10.3.3 Catalysis 309  
        10.3.4 Plasmonics 311  
        10.3.5 Surface Enhanced Raman Spectroscopy (SERS) 312  
     10.4 Superlattice Formation 313  
        10.4.1 Nanocubes 314  
        10.4.2 Nano-octahedra 314  
        10.4.3 Nanoplates and Nanostars 314  
        10.4.4 Nanorods 315  
     10.5 Methods Used for the Directed Assembly of Nanoparticles 316  
        10.5.1 The Langmuir-Blodgett (LB) Method 316  
        10.5.2 Ligand Stabilization 320  
        10.5.3 The Solvent Evaporation Technique 322  
        10.5.4 The DNA-Template Method 325  
        10.5.5 Template Assembly 327  
        10.5.6 The Sedimentation Method 327  
        10.5.7 Pressure Induced Growth 328  
        10.5.8 Light-Induced Assembly 329  
     10.6 Conclusions and Perspectives 330  
     Bibliography 331  
  11 Nanostructured Catalysts for the Electrochemical Reduction of CO2 340  
     Abstract 340  
     11.1 Introduction 341  
        11.1.1 Background 341  
        11.1.2 Bulk Metal Catalysts for CO2 Reduction 342  
        11.1.3 Nanostructured Metal Catalysts for CO2 Reduction 345  
     11.2 Nanostructured Metal Catalysts for CO2 Reduction to CO 345  
        11.2.1 Nanostructured Au 346  
           11.2.1.1 Au Nanoparticles 346  
           11.2.1.2 Au Nanowires 347  
        11.2.2 Nanostructured Ag 348  
           11.2.2.1 Ag Nanoparticles 350  
           11.2.2.2 Nanoporous Ag 351  
        11.2.3 Nanostructured Zn 352  
        11.2.4 Nanostructured Pd 353  
        11.2.5 Metal Organic Frameworks 353  
     11.3 Nanostructured Metal Catalysts for CO2 Reduction to Hydrocarbons 354  
        11.3.1 Cu Nanoparticles 355  
        11.3.2 Cu Nanowires 356  
        11.3.3 Cu Nanofoam 358  
     11.4 Oxide-Derived Metallic Nanocatalysts for CO2 Reduction 359  
        11.4.1 Oxide-Derived Cu 360  
        11.4.2 Oxide-Derived Au 361  
        11.4.3 Oxide-Derived Pb 362  
        11.4.4 Oxide-Derived Ag 363  
     11.5 Bimetallic Nanocatalysts 364  
     11.6 Nano Carbon Catalysts 366  
     11.7 Summary and Outlook 371  
     References 372  
  12 Strategies for the Synthesis of Anisotropic Catalytic Nanoparticles 377  
     Abstract 377  
     12.1 Introduction 377  
     12.2 Synthesis of Catalytic Nanoparticles 379  
        12.2.1 Seed Mediated Growth 379  
        12.2.2 Template Mediated Growth 383  
        12.2.3 Thermal Decomposition 386  
        12.2.4 Electrochemical and Galvanic Replacement 388  
     12.3 Anisotropic Metal Nanoparticles Catalytic Applications 390  
        12.3.1 Catalytic Applications 390  
        12.3.2 Bimetallic Anisotropic Nanoparticles 393  
     12.4 Conclusion 394  
     References 395  
  13 Biomedical Applications of Anisotropic Gold Nanoparticles 401  
     Abstract 401  
     13.1 Introduction 402  
     13.2 Synthesis of Gold Nanorods 405  
        13.2.1 Synopsis 405  
        13.2.2 Historical Synthetic Approaches 405  
        13.2.3 New Approaches to Nanorod Syntheses Via a Seed-Mediated Approach 406  
           13.2.3.1 Secondary Growth 406  
           13.2.3.2 Pre-reduction with Salicylic Acid 408  
           13.2.3.3 Overgrowth of Gold Nanorods Via a Binary Surfactant Mixture 410  
           13.2.3.4 Improved Conversion of HAuCl4 into Gold Nanorods Via Re-seeding Approach 411  
     13.3 Functionalization of Gold Nanoparticles 412  
        13.3.1 Synopsis 412  
        13.3.2 Functionalization Using Capping Ligand 413  
        13.3.3 Functionalization Using Biomolecules 414  
           13.3.3.1 Oligonucleotides 414  
           13.3.3.2 Antibodies 415  
           13.3.3.3 Peptides 417  
     13.4 Plasmonic Photothermal Therapy 418  
        13.4.1 Synopsis 418  
        13.4.2 Optical Properties 419  
           13.4.2.1 Surface Plasmon Resonance SPR 419  
           13.4.2.2 Tunability of Optical Properties 419  
        13.4.3 Targeting 421  
        13.4.4 Examples 422  
           13.4.4.1 Gold Nanocages in the Photothermal Ablation of Breast Cancer 422  
           13.4.4.2 Gold Nanorods in the Photothermal Ablation of Squamous Cell Carcinoma 423  
     13.5 Conclusion 424  
     References 425  
  14 Application of Gold Nanorods in Cardiovascular Science 429  
     Abstract 429  
     14.1 Introduction 429  
     14.2 Application of Gold Nanorods as Agents to Detect Cardiovascular Disease 430  
     14.3 Gold Nanorods as Reporters of Material Deformation and Mechanical Environment 433  
     14.4 Using Gold Nanorods to Direct Cell Behavior 434  
     14.5 Using Gold Nanorods to Alter the Material Properties of Cardiac Valves 437  
     14.6 Conclusions and Future Directions 440  
     Acknowledgements 440  
     References 441  
  15 Architectured Nanomembranes 445  
     Abstract 445  
     15.1 Introduction 445  
     15.2 Synthesis Methodologies 447  
     15.3 Experimental 449  
        15.3.1 Production of Titania Nanotube Membranes 449  
        15.3.2 Production of Nanoporous Glass Membranes 450  
     15.4 Results and Discussion 451  
     15.5 Conclusion 462  
     Acknowledgements 463  
     References 463  
  Summary and Final Thoughts 468  
  Index 470  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz