Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Adsorption Processes for Water Treatment and Purification
  Großes Bild
 
Adsorption Processes for Water Treatment and Purification
von: Adrián Bonilla-Petriciolet, Didilia Ileana Mendoza-Castillo, Hilda Elizabeth Reynel-Ávila
Springer-Verlag, 2017
ISBN: 9783319581361
266 Seiten, Download: 5434 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 5  
  Contents 6  
  Contributors 11  
  Chapter 1: Introduction 13  
     1.1 Adsorption: A Cost-Effective Technology for Water Treatment 14  
     1.2 Priority Pollutants in Water Purification 16  
        1.2.1 Heavy Metals 17  
        1.2.2 Dyes 17  
        1.2.3 Pharmaceuticals 18  
        1.2.4 Fluoride 18  
        1.2.5 Arsenic 19  
        1.2.6 Emerging Pollutants 19  
     1.3 Adsorption Process Intensification 20  
        1.3.1 Synthesis of Tailored Adsorbents 20  
        1.3.2 Optimization and Design of Adsorption Systems 21  
        1.3.3 Modeling of Adsorption Processes 22  
        1.3.4 Regeneration and Final Disposal of Exhausted Adsorbents 23  
        1.3.5 Life Cycle Analysis 24  
     1.4 Scope and Outline of Chapters 25  
     References 26  
  2: Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations 31  
     2.1 Introduction 32  
     2.2 Experimental Procedures to Obtain Equilibrium Curves 37  
     2.3 Classification of the Equilibrium Isotherms 38  
        2.3.1 Subclasses 41  
     2.4 Adsorption Isotherm Models 42  
        2.4.1 Henry´s Law 42  
        2.4.2 Monolayer Adsorption and the Langmuir Isotherm 42  
        2.4.3 Multilayer Adsorption and the BET Isotherm 44  
        2.4.4 Other Isotherm Models 44  
           2.4.4.1 Temkin Isotherm 44  
           2.4.4.2 Freundlich Isotherm 44  
           2.4.4.3 Dubinin-Radushkevich (D-R) Isotherm 45  
           2.4.4.4 Redlich-Peterson (R-P) Model 45  
        2.4.5 Statistical Physics Models 46  
        2.4.6 Typical Values of Isotherm Parameters for Different Adsorbate-Adsorbent Systems 47  
     2.5 Regression Methods and Error Analysis 52  
        2.5.1 Model Accuracy 53  
        2.5.2 Comparison Between Linear and Nonlinear Regression Methods 54  
     2.6 Adsorption Thermodynamics 57  
     2.7 Concluding Remarks 59  
     References 60  
  Chapter 3: Adsorption Kinetics in Liquid Phase: Modeling for Discontinuous and Continuous Systems 64  
     3.1 Introduction 65  
     3.2 Adsorption Kinetics in Discontinuous Batch Systems 66  
        3.2.1 Diffusional Mass Transfer Models 66  
        3.2.2 Adsorption Reaction Models 71  
           3.2.2.1 Pseudo-First-Order Model 71  
           3.2.2.2 Pseudo-Second-Order Model 71  
           3.2.2.3 Elovich Model 73  
     3.3 Fixed-Bed Adsorption 73  
        3.3.1 Mass Balance and Modeling of the Breakthrough Curves Based on Mass Transfer Mechanism 75  
        3.3.2 Empirical Models for Breakthrough Curves 76  
           3.3.2.1 Bohart-Adams Model 77  
           3.3.2.2 Thomas Model 77  
           3.3.2.3 Wolborska Model 77  
           3.3.2.4 Yoon-Nelson Model 78  
        3.3.3 Design of Fixed-Bed Adsorption Systems 78  
           3.3.3.1 LUB Concept 79  
           3.3.3.2 Bed Depth Service Time (BDST) 79  
     3.4 Numerical Methods and Parameters Estimation 80  
        3.4.1 Solving Diffusional Mass Transfer Models 81  
        3.4.2 Solving Adsorption Reaction Models and Empirical Models for Breakthrough Curves 83  
     3.5 Conclusion 84  
     References 85  
  4: Hydrothermal Carbonisation: An Eco-Friendly Method for the Production of Carbon Adsorbents 88  
     4.1 Introduction 89  
     4.2 Hydrothermal Carbon Preparation 90  
        4.2.1 Precursors 90  
        4.2.2 Hydrothermal Process 92  
        4.2.3 Templates 96  
        4.2.4 Coating 97  
        4.2.5 Activation 97  
           4.2.5.1 Chemical Activation 98  
           4.2.5.2 Physical and Thermal Activation 98  
        4.2.6 Functionalisation 99  
           4.2.6.1 Functionalisation During the Hydrothermal Process (One Step) 100  
           4.2.6.2 Post-functionalisation (Two Steps) 100  
        4.2.7 Hydrothermal Versus Pyrolytic Carbonisation 102  
     4.3 Adsorption 103  
        4.3.1 Dye Adsorption 104  
        4.3.2 Pesticides 105  
        4.3.3 Drugs 106  
        4.3.4 Endocrine Disrupting Chemicals 106  
        4.3.5 Metal Ions 107  
           4.3.5.1 p-Block and d-Block Metals 108  
           4.3.5.2 f-Block Metals 110  
           4.3.5.3 Mixture of Metals 114  
        4.3.6 Phosphorus 114  
        4.3.7 Phenols 115  
        4.3.8 Wastewater 115  
        4.3.9 Reusability 115  
     4.4 Conclusions 116  
     References 116  
  5: Removal of Heavy Metals, Lead, Cadmium, and Zinc, Using Adsorption Processes by Cost-Effective Adsorbents 120  
     5.1 Introduction 121  
     5.2 Adsorption Process 123  
        5.2.1 Equilibrium Adsorption Isotherm 123  
           5.2.1.1 The Langmuir Model 124  
           5.2.1.2 The Freundlich Model 124  
           5.2.1.3 The Redlich-Peterson Model 125  
           5.2.1.4 The Sips (Langmuir-Freundlich) Model 125  
        5.2.2 Kinetic Studies and Models 126  
           5.2.2.1 The Pseudo-First-Order Model 126  
           5.2.2.2 The Pseudo-Second-Order Model 127  
     5.3 Low-Cost Adsorbent Materials and Metal Adsorption 128  
        5.3.1 Agricultural Waste 128  
        5.3.2 Industrial By-Products and Wastes 133  
        5.3.3 Marine Materials 135  
        5.3.4 Zeolite and Clay 137  
     5.4 Conclusion 143  
     References 143  
  Chapter 6: Removal of Antibiotics from Water by Adsorption/Biosorption on Adsorbents from Different Raw Materials 150  
     6.1 Introduction 151  
     6.2 Adsorbent Materials 154  
        6.2.1 Commercial Activated Carbons 154  
        6.2.2 Sludge-Derived Materials 155  
           6.2.2.1 Preparation of Adsorbent Materials from Sludge 156  
           6.2.2.2 Optimization of Sludge Activation Process 156  
              Optimization of Sludge Activation Process Without Binder (Linear Model) 156  
              Optimization of Sludge Activation Process with Binder (Orthogonal Model) 158  
           6.2.2.3 Characterization of Sludge-Derived Adsorbent Materials 160  
              Textural Characterization of Adsorbents with Humic Acid as Binding Agent 160  
              Influence of Binding Agent on Properties of the Adsorbent Materials 162  
        6.2.3 Activated Carbons from Petroleum Coke 164  
           6.2.3.1 Preparation of Activated Carbons by Chemical Activation of Coke 164  
           6.2.3.2 Characterization of Activated Carbons from Coke 166  
     6.3 Kinetic Study of the Adsorption of Tetracyclines and Nitroimidazoles on Sludge-Derived Materials and Activated Carbons 168  
        6.3.1 Tetracyclines and Nitroimidazoles Characterization 168  
           6.3.1.1 Tetracyclines 168  
           6.3.1.2 Nitroimidazoles 168  
        6.3.2 Kinetic and Diffusional Models 169  
           6.3.2.1 Pseudo First-Order Kinetic Model 172  
           6.3.2.2 Pseudo Second-Order Kinetic Model 173  
           6.3.2.3 Intraparticle Diffusion Model 173  
           6.3.2.4 Surface and Pore Volume Diffusion Model 174  
        6.3.3 Results and Discussion 175  
           6.3.3.1 Kinetic Study of Tetracycline Adsorption on Sludge-Derived Adsorbents 175  
           6.3.3.2 Diffusion of Tetracyclines on Activated Carbon 182  
           6.3.3.3 Adsorption Kinetics of Nitroimidazoles on Activated Carbons 184  
     6.4 Adsorption/Biosorption Equilibrium Isotherms of Tetracyclines and Nitroimidazoles on Sludge-Derived Materials and Activate... 191  
        6.4.1 Nitroimidazole Adsorption Processes 191  
        6.4.2 Tetracyclines Adsorption Isotherms 194  
        6.4.3 Influence of Operational Variables 196  
           6.4.3.1 Influence of Solution pH 196  
           6.4.3.2 Influence of Solution Ionic Strength 199  
           6.4.3.3 Influence of the Presence of Microorganisms 199  
     6.5 Adsorption of Tetracyclines and Nitroimidazoles on Sludge-Derived Materials and Activated Carbons in Dynamic Regime. Deter... 204  
     6.6 Conclusions 207  
     References 209  
  7: Biosorption of Copper by Saccharomyces cerevisiae: From Biomass Characterization to Process Development 216  
     7.1 Introduction 217  
     7.2 Materials and Methods 219  
        7.2.1 Yeast Strain 219  
        7.2.2 Potentiometric Titration 219  
        7.2.3 Immobilization into Calcium Alginate 219  
        7.2.4 Batch Biosorption 220  
        7.2.5 Fixed-Bed Biosorption 220  
     7.3 Results 221  
        7.3.1 Identification of the Biomass Active Sites 221  
        7.3.2 Biosorption by Calcium Alginate Beads Under Batch Operation 224  
           7.3.2.1 Biosorption Isotherms 224  
           7.3.2.2 Biosorption Under Batch Operation 226  
        7.3.3 Biosorption Under Fixed-Bed Operation 229  
     7.4 Conclusions 233  
     References 234  
  8: Transition Metal-Substituted Magnetite as an Innovative Adsorbent and Heterogeneous Catalyst for Wastewater Treatment 236  
     8.1 Introduction 237  
     8.2 Transition Metal-Substituted Magnetite 239  
     8.3 Physicochemical Changes in Modified Magnetite 240  
     8.4 Adsorption 241  
     8.5 Oxidation Process 249  
     8.6 Conclusions 251  
     References 255  
  Index 259  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz