Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Laser Beam Micro-milling of Micro-channels in Aerospace Alloys
  Großes Bild
 
Laser Beam Micro-milling of Micro-channels in Aerospace Alloys
von: Saied Muhammed Hassan Darwish, Naveed Ahmed, Abdulrahman M. Al-Ahmari
Springer-Verlag, 2017
ISBN: 9789811036026
368 Seiten, Download: 15542 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Acknowledgements 6  
  Contents 7  
  Abbreviations 8  
  List of Figures 10  
  List of Tables 25  
  Abstract 29  
  1 Introduction 31  
     1 Generation of Laser Pulses 33  
        1.1 Q-Switching 33  
        1.2 Function Principle of Q-Switch 34  
        1.3 Closing Frequency and Opening Time of the Q-Switch 34  
     2 Laser Ablation 35  
     3 Micro-channels Applications 36  
     4 Problem Definition 39  
     5 Research Objectives 40  
     6 Research Methodology 41  
     7 Research Utilization 42  
  2 Literature Review 44  
     1 Background 44  
     2 Laser Beam Machining (LBM) 45  
        2.1 Physical Factors Affecting the Process 45  
           2.1.1 Laser Radiation Features 46  
           2.1.2 Substrate Material Features 46  
        2.2 Laser Ablation Mechanism 46  
        2.3 Laser Beam Milling 47  
           2.3.1 Ablation Mechanism of Laser Beam Milling 48  
           2.3.2 Laser Beam Milling of Titanium Alloys 48  
           2.3.3 Laser Beam Milling of Nickel Alloys 49  
           2.3.4 Laser Beam Milling of Ceramics and CFRP 50  
           2.3.5 Parametric Effects in Laser Beam Milling 50  
           2.3.6 Temperatures and Stress Field Distribution 52  
           2.3.7 Laser Induced Periodic Structures 53  
           2.3.8 Laser Beam Milling with Auxiliary Concepts 54  
        2.4 Laser Beam Drilling/Trepanning 54  
           2.4.1 Ablation Mechanism in Laser Beam Drilling 55  
           2.4.2 Parametric Effects in Laser Beam Drilling 56  
        2.5 Dual Beam Laser Machining 58  
        2.6 Conclusions and Remarks 59  
     3 Laser Assisted Machining (LAM) 59  
        3.1 Material Removal Mechanism in LAM 60  
        3.2 Parametric Effects and Inspirations of LAM 60  
           3.2.1 Cutting Forces and Material Removal Rate 62  
           3.2.2 Tool Life and Surface Roughness 63  
           3.2.3 Temperature Fields Measurements and Microstructure 64  
        3.3 Conclusions and Remarks 66  
     4 Laser Chemical Machining/Etching (LCM/E) 66  
        4.1 LCM/E Mechanism 67  
        4.2 Parametric Effects and Inspirations of LCM/E 68  
           4.2.1 Porous Structures 68  
           4.2.2 3D Structures 70  
        4.3 Conclusions and Remarks 71  
     5 Laser Assisted Electrochemical Machining (LAECM) 72  
        5.1 Conclusions and Remarks 74  
     6 Under-Water Laser Ablation (UWLA) 74  
        6.1 UWLA Mechanism 75  
           6.1.1 Beam Focus 75  
           6.1.2 Water Layer Thickness 75  
           6.1.3 Splashing and Cavitation Bubbles 76  
           6.1.4 Melt Ejection and Sample Configuration 76  
        6.2 Parametric Effects of UWLA 77  
           6.2.1 High Ablation Rate 80  
           6.2.2 Low Ablation Rate 80  
           6.2.3 Possible Reasons of Ablation Rate Variations 81  
        6.3 Inspirations of UWLA 81  
           6.3.1 Crater Formation and Structure Characteristics 82  
           6.3.2 Under-Water Laser Milling 82  
           6.3.3 Under-Water Laser Drilling 85  
           6.3.4 Synthesis of Nano-particles 86  
        6.4 Conclusions and Remarks 89  
     7 Micro-channels Applications and Fabrication 90  
        7.1 Micro-channel Heat Exchangers 90  
           7.1.1 Automotive and Aerospace 90  
           7.1.2 Chemical Reactors 92  
              Falling-film Micro-reactors 93  
              Membrane Separation Technology 93  
              Co-current Micro-channel Absorption 94  
           7.1.3 Cryogenic Systems 95  
        7.2 Laser Diode Applications 96  
        7.3 Micro-channel Heat Pipes 96  
        7.4 Micro-pulsating Heat Pipes 97  
        7.5 Micro-channel Flat Heat Pipes 99  
        7.6 Micro-channel Heat Plates 100  
        7.7 Micro-channel Fabrication Techniques, Materials, Sizes and Shapes 100  
           7.7.1 Fabrication Techniques 100  
           7.7.2 Micro-channel Materials 105  
           7.7.3 Micro-channel Shapes and Sizes 105  
        7.8 Conclusions and Remarks 106  
     8 Literature Review Conclusions and Research Gaps 106  
  3 Research Methodology 110  
     1 Overall Research Methodology 110  
     2 Methodology of Initial Parameters Screening 111  
        2.1 Defining Ranges and Levels of Parameters 112  
        2.2 Defining Fixed and Variable Factors 113  
     3 Methodology of Laser Beam Machining Experimentation 114  
        3.1 CAD Modeling and Programming Procedure 114  
        3.2 Specimen Preparation and Machine Setting 117  
        3.3 Experimentation 118  
           3.3.1 Pilot Experimentation Without DOE 118  
           3.3.2 Mature Experimentation with DOE 121  
     4 Measurements Methodology 123  
        4.1 Metallographic Specimen Preparation 123  
        4.2 Chemical Etching 123  
        4.3 Measurements 125  
     5 Methodology of Analysis (Modeling, Optimization and Validations) 126  
        5.1 Mathematical Modeling 127  
        5.2 Multi-objective Optimization 128  
  4 Under-Water Laser Beam Micro-milling (UWLBMM) of Aerospace Alloys 130  
     1 Introduction 130  
     2 Under-Water Laser Beam Micro-milling (UWLBMM) 133  
        2.1 Experimental Setup 133  
        2.2 Machining Mechanism 139  
        2.3 Results and Discussions 140  
           2.3.1 Micro-channels Under Low Scan Speeds 140  
           2.3.2 Micro-channels Under High Scan Speeds 142  
        2.4 Analysis of Parametric Effects 145  
           2.4.1 Effect of Scan Speed 145  
           2.4.2 Effect of Pulse Repetition Rate 146  
           2.4.3 Effect of Laser Power 146  
        2.5 Concluding Remarks on UWLBMM 147  
     3 Comparison of Under-Water LBMM and Dry LBMM 148  
        3.1 Experimental Setup 148  
        3.2 Materials and Methods 148  
        3.3 Laser Beam Machining Under Dry Conditions 149  
        3.4 Laser Beam Machining Under Wet Conditions 151  
        3.5 Comparison of Parametric Effects 152  
           3.5.1 Effect of Laser Power 153  
           3.5.2 Effect of Pulse Repetition Rate 154  
           3.5.3 Effect of Scan Speed 156  
        3.6 Concluding Remarks on Comparison of Under-Water LBMM and Dry LBMM 159  
     4 Limitations of Under-Water Laser Beam Micro-milling 160  
  5 Dry Laser Beam Micro-milling (DLBMM) of Aerospace Alloys 162  
     1 DLBMM of Nickel Alloy (NA) 164  
        1.1 NA 100 × 50 µm Micro-channels 164  
           1.1.1 DLBMM of NA 100 × 50 µm 164  
           1.1.2 Parametric Effects During DLBMM of NA 100 × 50 µm 165  
           1.1.3 Microstructures of NA 100 × 50 µm Micro-channels 167  
           1.1.4 Micro-hardness Profiles NA 100 × 50 µm Micro-channels 169  
        1.2 NA 200 × 100 µm Micro-channels 172  
           1.2.1 DLBMM of NA 200 × 100 µm 172  
           1.2.2 Parametric Effects During DLBMM of NA 200 × 100 µm 172  
           1.2.3 Microstructures of NA 200 × 100 µm Micro-channels 175  
           1.2.4 Micro-hardness Profiles NA 100 × 50 µm Micro-channels 175  
        1.3 NA 400 × 200 µm Micro-channels 177  
           1.3.1 DLBMM of NA 400 × 200 µm 177  
           1.3.2 Parametric Effects During DLBMM of NA 400 × 200 µm 178  
           1.3.3 Microstructures of NA 400 × 200 µm Micro-channels 180  
           1.3.4 Micro-hardness Profiles NA 400 × 200 µm Micro-channels 180  
        1.4 NA 800 × 400 µm Micro-channels 182  
           1.4.1 DLBMM of NA 800 × 400 µm 182  
           1.4.2 Parametric Effects During DLBMM of NA 800 × 400 µm 182  
           1.4.3 Microstructures of NA 800 × 400 µm Micro-channels 184  
           1.4.4 Micro-hardness Profiles NA 800 × 400 µm Micro-channels 185  
        1.5 NA 1000 × 500 µm Micro-channels 186  
           1.5.1 DLBMM of NA 1000 × 500 µm 186  
           1.5.2 Parametric Effects During DLBMM of NA 1000 × 500 µm 187  
           1.5.3 Microstructures of NA 1000 × 500 µm Micro-channels 187  
           1.5.4 Micro-hardness Profiles NA 1000 × 500 µm Micro-channels 188  
     2 DLBMM of Titanium Alloy (TA) 191  
     3 DLBMM of Aluminum Alloy (AA) 194  
     4 Concluding Remarks 197  
  6 Dimensional Variations in DLBMM of Aerospace Alloys 199  
     1 Basics of Variations and Nomenclature 200  
     2 Geometrical Measurements 202  
     3 Dimensional Variations Over Micro-channel Sizes 206  
        3.1 Dimensional Variations in DLBMM of Nickel Alloy 206  
           3.1.1 Parametric Effects on Top Width (?XT) 207  
              Effect of Lamp Current Intensity 208  
              Effects of Pulse Frequency 208  
              Effects of Scan Speed 209  
           3.1.2 Parametric Effects on Bottom Width (?XB) 209  
              Effect of Lamp Current Intensity 210  
              Effects of Pulse Frequency 210  
              Effects of Scan Speed 211  
           3.1.3 Parametric Effects on Depth (?Z) 211  
              Effect of Lamp Current Intensity 211  
              Effects of Pulse Frequency 213  
              Effects of Scan Speed 213  
           3.1.4 Parametric Effects on Taperness (??) 214  
              Effect of Lamp Current Intensity 215  
              Effects of Pulse Frequency 215  
              Effects of Scan Speed 215  
        3.2 Dimensional Variations in DLBMM of Titanium Alloy 215  
        3.3 Dimensional Variations in DLBMM of Aluminum Alloy 217  
     4 Dimensional Variation Over Materials 218  
        4.1 Dimensional Variations in DLBMM of 100 × 50 µm Micro-channels 218  
           4.1.1 Parametric Effects on Top Width (?XT) of 100 × 50 µm Micro-channels 218  
              Effect of Lamp Current Intensity 219  
              Effect of Pulse Frequency 219  
              Effect of Scan Speed 220  
           4.1.2 Parametric Effects on Bottom Width (?XB) of 100 × 50 µm Micro-channels 220  
              Effect of Lamp Current Intensity 220  
              Effect of Pulse Frequency 221  
              Effect of Scan Speed 221  
           4.1.3 Parametric Effects on Depth (?Z) of 100 × 50 µm Micro-channels 222  
              Effect of Lamp Current Intensity 222  
              Effect of Pulse Frequency 223  
              Effect of Scan Speed 223  
           4.1.4 Parametric Effects on Taperness (??) of 100 × 50 µm Micro-channels 223  
              Effect of Lamp Current Intensity 223  
              Effect of Pulse Frequency 224  
              Effect of Scan Speed 224  
        4.2 Dimensional Variations in DLBMM of 200 × 100 µm Micro-channels 225  
        4.3 Dimensional Variations in DLBMM of 400 × 200 µm Micro-channels 225  
        4.4 Dimensional Variations in DLBMM of 800 × 400 µm Micro-channels 225  
        4.5 Dimensional Variations in DLBMM of 1000 × 500 µm Micro-channels 226  
     5 Concluding Remarks 226  
  7 Mathematical Modeling and Multi-objective Optimization 228  
     1 Analysis of Variance (ANOVA) Tests 228  
     2 Mathematical Modeling 230  
     3 Multi-objective Optimization 230  
     4 Modeling and Optimization for Nickel Alloy 232  
        4.1 Modeling and Optimization for NA 100 × 50 µm Micro-channels 232  
        4.2 Modeling and Optimization for NA 200 × 100 µm Micro-channels 234  
        4.3 Modeling and Optimization for NA 400 × 200 µm Micro-channels 236  
        4.4 Modeling and Optimization for NA 800 × 400 µm Micro-channels 238  
        4.5 Modeling and Optimization for NA 1000 × 500 µm Micro-channels 240  
        4.6 Summary of Multi-objective Optimization for Nickel Alloy 242  
     5 Modeling and Optimization for Titanium Alloy 243  
        5.1 Modeling and Optimization for TA 100 × 50 µm Micro-channels 243  
        5.2 Modeling and Optimization for TA 200 × 100 µm Micro-channels 245  
        5.3 Modeling and Optimization for TA 400 × 200 µm Micro-channels 247  
        5.4 Modeling and Optimization for TA 800 × 400 µm Micro-channels 250  
        5.5 Modeling and Optimization for TA 1000 × 500 µm Micro-channels 252  
        5.6 Summary of Multi-objective Optimization for Titanium Alloy 254  
     6 Modeling and Optimization for Aluminum Alloy 255  
        6.1 Modeling and Optimization for AA 100 × 50 µm Micro-channels 255  
        6.2 Modeling and Optimization for AA 200 × 100 µm Micro-channels 257  
        6.3 Modeling and Optimization for AA 400 × 200 µm Micro-channels 259  
        6.4 Modeling and Optimization for AA 800 × 400 µm Micro-channels 261  
        6.5 Modeling and Optimization for AA 1000 × 500 µm Micro-channels 263  
        6.6 Summary of Multi-objective Optimization for Aluminum Alloy 265  
     7 Concluding Remarks 266  
  8 Validations—Modeling and Optimization 268  
     1 Validation of Predictive Models of Nickel Alloy 268  
        1.1 Validation of Predictive Models of NA 100 × 50 µm Micro-channels 268  
        1.2 Validation of Predictive Models of NA 200 × 100 µm Micro-channels 271  
        1.3 Validation of Predictive Models of NA 400 × 200 µm Micro-channels 273  
        1.4 Validation of Predictive Models of NA 800 × 400 µm Micro-channels 276  
        1.5 Validation of Predictive Models of NA 1000 × 500 µm Micro-channels 278  
        1.6 Validation of Multi-objective Optimization for Nickel Alloy 281  
     2 Validation of Predictive Models of Titanium Alloy 281  
     3 Validation of Predictive Models of Aluminum Alloy 284  
     4 Concluding Remarks 285  
  9 Conclusions and Future Work Recommendations 286  
     1 Conclusions of UWLBMM 286  
        1.1 Conclusions of DLBMM 287  
     2 Future Work Recommendations 290  
        2.1 Future Work Recommendations for UWLBMM 290  
        2.2 Future Work Recommendations for DLBMM 291  
  Appendix A 292  
  Appendix B 340  
  References 353  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz