Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Active Metamaterials - Terahertz Modulators and Detectors
  Großes Bild
 
Active Metamaterials - Terahertz Modulators and Detectors
von: Saroj Rout, Sameer Sonkusale
Springer-Verlag, 2017
ISBN: 9783319522197
126 Seiten, Download: 5039 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Acknowledgments 8  
  Contents 9  
  1 Introduction 12  
     1.1 Towards Closing the ``Terahertz Gap'' 12  
        1.1.1 Why Is the ``Terahertz Gap'' Interesting 14  
           1.1.1.1 Continuous-Wave Terahertz System for Inspection Applications 15  
           1.1.1.2 Giga-Bit Wireless Link Using 300–400GHz Bands 16  
        1.1.2 A Brief History of Terahertz Technologies 17  
     1.2 Introduction to Metamaterials 19  
        1.2.1 A Brief History 19  
        1.2.2 Overview of Metamaterials 20  
           1.2.2.1 Magnetic Split-Ring Resonator (SRR) 22  
           1.2.2.2 Electrically Coupled LC Resonator (ELC) 24  
        1.2.3 Metamaterials: A Suitable Technology for Terahertz Devices 25  
           1.2.3.1 Brief Overview of Metamaterial Based Terahertz Devices 26  
     1.3 Overview of Terahertz Wave Modulators 27  
     References 32  
  2 Background Theory 37  
     2.1 Plane Waves in a Nonconducting Medium 37  
        2.1.1 Negative Refractive Index 40  
        2.1.2 Propagation of Waves in Left-Handed Material 40  
        2.1.3 Propagation of Waves in Single Negative Medium 41  
     2.2 Dispersion in Nonconductors 41  
        2.2.1 Lorentz Oscillator Model for Permitivity 42  
        2.2.2 Anomalous Dispersion and Resonant Absorption 43  
     2.3 Metamaterial as a Modulator 46  
     References 48  
  3 Experimental Methods 50  
     3.1 Electromagnetic Modeling and Simulations of Metamaterials 50  
        3.1.1 Boundary and Symmetry Conditions 51  
        3.1.2 Homogenous Parameter Extraction 52  
     3.2 Design for Fabrication in Foundry Processes 52  
        3.2.1 Typical 45nm CMOS Process 53  
        3.2.2 Physical Properties of Metal and Dielectrics at Optical Frequencies 54  
        3.2.3 Case Studies 55  
           3.2.3.1 Single Layer Metamaterial Operating at 100m Wavelength 56  
           3.2.3.2 Multi-Layer Metamaterial Design 57  
     3.3 Test and Characterization 59  
        3.3.1 Terahertz Time-Domain Spectroscopy (THz-TDS) 59  
           3.3.1.1 Terahertz Time-Domain Spectrometer 59  
           3.3.1.2 Laser Sources 60  
           3.3.1.3 THz Transmitters and Detectors 60  
           3.3.1.4 Bandwidth Limitation of THz Detectors 61  
           3.3.1.5 Collimating and Focusing Optics 62  
           3.3.1.6 Lock-In Detection 63  
           3.3.1.7 Terahertz Time-Domain Data Analysis 64  
        3.3.2 Continuous-Wave (cw) Terahertz Spectroscopy 65  
           3.3.2.1 A Continuous-Wave Terahertz (cw-THz) Spectrometer 65  
           3.3.2.2 Laser Sources 66  
           3.3.2.3 THz Transmitters and Detectors 67  
           3.3.2.4 Data Analysis 68  
        3.3.3 Optical Alignment of Off-Axis Parabolic Mirrors 69  
           3.3.3.1 Alignment Procedure 70  
           3.3.3.2 Vertical Alignment 71  
           3.3.3.3 Horizontal Alignment 72  
     References 73  
  4 High-Speed Terahertz Modulation Using Active Metamaterial 76  
     4.1 Introduction 76  
     4.2 Design Principle of the HEMT Controlled MetamaterialModulator 77  
        4.2.1 Circuit Model for the Electric-Coupled LC(ELC) Resonator 78  
        4.2.2 Principle of Voltage Controlled Terahertz WaveModulator 80  
     4.3 Design and Fabrication 82  
     4.4 Experimental Setup 84  
     4.5 Results and Discussion 86  
        4.5.1 THz Transmission with DC-Biased HEMT 86  
        4.5.2 Computational Investigation 87  
        4.5.3 High Frequency THz Modulation 88  
     References 90  
  5 A Terahertz Spatial Light Modulator for Imaging Application 92  
     5.1 Introduction to Single-Pixel Imaging 92  
        5.1.1 A Brief Historical Perspective 94  
        5.1.2 Imaging Theory 95  
     5.2 A Review of THz Spatial Light Modulators 96  
     5.3 Spatial Light Modulator Design and Assembly 99  
     5.4 Circuit Design for Electronic Control of the SLM 104  
     5.5 Experimental Setup for Terahertz Characterization and Imaging 105  
     5.6 Results and Discussions 106  
        5.6.1 Terahertz Characterization of the Spatial LightModulator 106  
        5.6.2 Single-Pixel Terahertz Imaging 107  
     References 109  
  6 A Terahertz Focal Plane Array Using Metamaterials in a CMOS Process 111  
     6.1 Introduction 111  
     6.2 A 0.18?m CMOS Foundry Process Technology 112  
     6.3 Principle of Resistive Self-Mixing Detection 114  
     6.4 Metamaterial Based Terahertz CMOS Detector Design 116  
        6.4.1 Terahertz Detection Using Source-Driven Self-Mixing Architecture 116  
        6.4.2 Circuit Architecture for Terahertz Detection 117  
     6.5 Metamaterial Design for Terahertz Detection 117  
     6.6 Design of the Test Chip in 0.18?m CMOS Process 121  
     6.7 Circuit Simulation Results 122  
     References 123  
  Appendix A Electromagnetic Waves 125  
     A.1 Helmholtz's Equation 125  
     A.2 Electromagnetic Waves Are Transverse 125  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz