Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Boundary-Layer Theory
  Großes Bild
 
Boundary-Layer Theory
von: Hermann Schlichting (Deceased), Klaus Gersten
Springer-Verlag, 2016
ISBN: 9783662529195
814 Seiten, Download: 21566 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface to the Ninth English Edition 5  
  Preface to the Eighth English Edition 6  
  Preface to the Ninth German Edition 7  
  Contents 9  
  Introduction 19  
  Abstract 24  
  Part I Fundamentals of Viscous Flows 26  
  1. Some Features of Viscous Flows 27  
     1.1 Real and Ideal Fluids 27  
     1.2 Viscosity 28  
     1.3 Reynolds Number 30  
     1.4 Laminar and Turbulent Flows 36  
     1.5 Asymptotic Behaviour at Large Reynolds Numbers 38  
     1.6 Comparison of Measurements Using the Inviscid Limiting Solution 38  
     1.7 Summary 50  
  2. Fundamentals of Boundary–Layer Theory 52  
     2.1 Boundary–Layer Concept 52  
     2.2 Laminar Boundary Layer on a Flat Plate at Zero Incidence 53  
     2.3 Turbulent Boundary Layer on a Flat Plate at Zero Incidence 56  
     2.4 Fully Developed Turbulent Flow in a Pipe 59  
     2.5 Boundary Layer on an Airfoil 61  
     2.6 Separation of the Boundary Layer 62  
     2.7 Overview of the Following Material 71  
  3. Field Equations for Flowsof Newtonian Fluids 73  
     3.1 Description of Flow Fields 73  
     3.2 Continuity Equation 74  
     3.3 Momentum Equation 74  
     3.4 General Stress State of Deformable Bodies 75  
     3.5 General State of Deformation of Flowing Fluids 79  
     3.6 Relation Between Stresses and Rate of Deformation 84  
     3.7 Stokes Hypothesis 87  
     3.8 Bulk Viscosity and Thermodynamic Pressure 88  
     3.9 Navier–Stokes Equations 90  
     3.10 Energy Equation 91  
     3.11 Equations of Motion for Arbitrary Coordinate Systems (Summary) 95  
     3.12 Equations of Motion for Cartesian Coordinates in Index Notation 98  
     3.13 Equations of Motion in Different Coordinate Systems 101  
  4. General Propertiesof the Equations of Motion 105  
     4.1 Similarity Laws 105  
     4.2 Similarity Laws for Flow with Buoyancy Forces (Mixed Forced and Natural Convection) 108  
     4.3 Similarity Laws for Natural Convection 112  
     4.4 Vorticity Transport Equation 113  
     4.5 Limit of Very Small Reynolds Numbers 115  
     4.6 Limit of Very Large Reynolds Numbers 116  
     4.7 Mathematical Example of the Limit Re?? 118  
     4.8 Non–Uniqueness of Solutions of the Navier–Stokes Equations 121  
  5. Exact Solutionsof the Navier–Stokes Equations 122  
     5.1 Steady Plane Flows 122  
        5.1.1 Couette–Poiseuille Flows 122  
        5.1.2 Jeffery–Hamel Flows (Fully Developed Nozzle and Diffuser Flows) 125  
        5.1.3 Plane Stagnation–Point Flow 131  
        5.1.4 Flow Past a Parabolic Body 136  
        5.1.5 Flow Past a Circular Cylinder 136  
     5.2 Steady Axisymmetric Flows 137  
        5.2.1 Circular Pipe Flow (Hagen–Poiseuille Flow) 137  
        5.2.2 Flow Between Two Concentric Rotating Cylinders 138  
        5.2.3 Axisymmetric Stagnation–Point Flow 139  
        5.2.4 Flow at a Rotating Disk 140  
        5.2.5 Axisymmetric Free Jet 145  
     5.3 Unsteady Plane Flows 147  
        5.3.1 Flow at a Wall Suddenly Set into Motion (First Stokes Problem) 147  
        5.3.2 Flow at an Oscillating Wall (Second Stokes Problem) 150  
        5.3.3 Start–up of Couette Flow 151  
        5.3.4 Unsteady Asymptotic Suction 152  
        5.3.5 Unsteady Plane Stagnation–Point Flow 152  
        5.3.6 Oscillating Channel Flow 158  
     5.4 Unsteady Axisymmetric Flows 160  
        5.4.1 Vortex Decay 160  
        5.4.2 Unsteady Pipe Flow 160  
     5.5 Summary 162  
  Part IILaminar Boundary Layers 164  
  6. Boundary–Layer Equations in Plane Flow 165  
     6.1 Setting up the Boundary–Layer Equations 165  
     6.2 Wall Friction, Separation and Displacement 170  
     6.3 Dimensional Representation of the Boundary–Layer Equations 172  
     6.4 Friction Drag 175  
     6.5 Plate Boundary Layer 176  
  7. General Properties and Exact Solutions of the Boundary–Layer Equationsfor Plane Flows 185  
     7.1 Compatibility Condition at the Wall 186  
     7.2 Similar Solutions of the Boundary–Layer Equations 187  
        7.2.1 Derivation of the Ordinary Differential Equation 187  
        7.2.2 Wedge Flows 192  
        7.2.3 Flow in a Convergent Channel 194  
        7.2.4 Mixing Layer 195  
        7.2.5 Moving Plate 196  
        7.2.6 Free Jet 197  
        7.2.7 Wall Jet 200  
     7.3 Coordinate Transformation 202  
        7.3.1 G¨ortler Transformation 202  
        7.3.2 v. Mises Transformation 203  
        7.3.3 Crocco Transformation 204  
     7.4 Series Expansion of the Solutions 204  
        7.4.1 Blasius Series 204  
        7.4.2 G¨ortler Series 206  
     7.5 Asymptotic Behaviour of Solutions Downstream 207  
        7.5.1 Wake Behind Bodies 207  
        7.5.2 Boundary Layer at a Moving Wall 210  
     7.6 Integral Relations of the Boundary Layer 211  
        7.6.1 Momentum–Integral Equation 211  
        7.6.2 Energy–Integral Equation 212  
        7.6.3 Moment–of–Momentum Integral Equations 214  
  8. Approximate Methods for Solving the Boundary–Layer Equationsfor Steady Plane Flows 215  
     8.1 Integral Methods 216  
     8.2 Stratford’s Separation Criterion 222  
     8.3 Comparison of the Approximate Solutions with Exact Solutions 222  
        8.3.1 Retarded Stagnation–Point Flow 222  
        8.3.2 Divergent Channel (Diffuser) 224  
        8.3.3 Circular Cylinder Flow 225  
        8.3.4 Symmetric Flow past a Joukowsky Airfoil 227  
  9. Thermal Boundary Layers without Coupling of the Velocity Fieldto the Temperature Field 229  
     9.1 Boundary–Layer Equations for the Temperature Field 229  
     9.2 Forced Convection for Constant Properties 231  
     9.3 Effect of the Prandtl Number 235  
     9.4 Similar Solutions of the Thermal Boundary Layer 238  
     9.5 Integral Methods for Computing the Heat Transfer 243  
     9.6 Effect of Dissipation 246  
  10. Thermal Boundary Layers with Coupling of the Velocity Fieldto the Temperature Field 251  
     10.1 Remark 251  
     10.2 Boundary–Layer Equations 251  
     10.3 Boundary Layers with Moderate Wall Heat Transfer (Without Gravitational Effects) 253  
        10.3.1 Perturbation Calculation 253  
        10.3.2 Property Ratio Method (Temperature Ratio Method) 257  
        10.3.3 Reference Temperature Method 260  
     10.4 Compressible Boundary Layers (Without Gravitational Effects) 261  
        10.4.1 Physical Property Relations 261  
        10.4.2 Simple Solutions of the Energy Equation 264  
        10.4.3 Transformations of the Boundary–Layer Equations 266  
        10.4.4 Similar Solutions 269  
        10.4.5 Integral Methods 278  
        10.4.6 Boundary Layers in Hypersonic Flows 283  
     10.5 Natural Convection 285  
        10.5.1 Boundary–Layer Equations 285  
        10.5.2 Transformation of the Boundary–Layer Equations 290  
        10.5.3 Limit of Large Prandtl Numbers ( 291  
        10.5.4 Similar Solutions 293  
        10.5.5 General Solutions 297  
        10.5.6 Variable Physical Properties 298  
        10.5.7 Effect of Dissipation 300  
     10.6 Indirect Natural Convection 301  
     10.7 Mixed Convection 304  
  11. Boundary–Layer Control(Suction/Blowing) 311  
     11.1 Different Kinds of Boundary–Layer Control 311  
     11.2 Continuous Suction and Blowing 315  
        11.2.1 Fundamentals 315  
        11.2.2 Massive Suction (vw ???) 317  
        11.2.3 Massive Blowing (vw ? +?) 319  
        11.2.4 Similar Solutions 322  
        11.2.5 General Solutions 327  
        11.2.6 Natural Convection with Blowing and Suction 330  
     11.3 Binary Boundary Layers 331  
        11.3.1 Overview 331  
        11.3.2 Basic Equations 332  
        11.3.3 Analogy Between Heat and Mass Transfer 336  
        11.3.4 Similar Solutions 337  
  12. Axisymmetric and Three–DimensionalBoundary Layers 341  
     12.1 Axisymmetric Boundary Layers 341  
        12.1.1 Boundary–Layer Equations 341  
        12.1.2 Mangler Transformation 343  
        12.1.3 Boundary Layers on Non–Rotating Bodies of Revolution 344  
        12.1.4 Boundary Layers on Rotating Bodies of Revolution 347  
        12.1.5 Free Jets and Wakes 351  
     12.2 Three–Dimensional Boundary Layers 355  
        12.2.1 Boundary–Layer Equations 355  
        12.2.2 Boundary Layer at a Cylinder 361  
        12.2.3 Boundary Layer at a Yawing Cylinder 362  
        12.2.4 Three–Dimensional Stagnation Point 364  
        12.2.5 Boundary Layers in Symmetry Planes 365  
        12.2.6 General Configurations 365  
  13. Unsteady Boundary Layers 368  
     13.1 Fundamentals 368  
        13.1.1 Remark 368  
        13.1.2 Boundary–Layer Equations 369  
        13.1.3 Similar and Semi–Similar Solutions 370  
        13.1.4 Solutions for Small Times (High Frequencies) 371  
        13.1.5 Separation of Unsteady Boundary Layers 372  
        13.1.6 Integral Relations and Integral Methods 373  
     13.2 Unsteady Motion of Bodies in a Fluid at Rest 374  
        13.2.1 Start–Up Processes 374  
        13.2.2 Oscillation of Bodies in a Fluid at Rest 381  
     13.3 Unsteady Boundary Layers in a Steady Basic Flow 384  
        13.3.1 Periodic Outer Flow 384  
        13.3.2 Steady Flow with a Weak Periodic Perturbation 386  
        13.3.3 Transition Between Two Slightly Different Steady Boundary Layers 388  
     13.4 Compressible Unsteady Boundary Layers 389  
        13.4.1 Remark 389  
        13.4.2 Boundary Layer Behind a Moving Normal Shock Wave 390  
        13.4.3 Flat Plate at Zero Incidence with Variable Free Stream Velocity and Wall Temperature 392  
  14. Extensions to the Prandtl Boundary–LayerTheory 395  
     14.1 Remark 395  
     14.2 Higher Order Boundary–Layer Theory 397  
     14.3 Hypersonic Interaction 407  
     14.4 Triple–Deck Theory 410  
     14.5 Marginal Separation 421  
     14.6 Massive Separation 426  
  Part IIILaminar–Turbulent Transition 430  
  15. Onset of Turbulence (Stability Theory) 431  
     15.1 Some Experimental Results on the Laminar–Turbulent Transition 431  
        15.1.1 Transition in the Pipe Flow 431  
        15.1.2 Transition in the Boundary Layer 435  
     15.2 Fundamentals of Stability Theory 440  
        15.2.1 Remark 440  
        15.2.2 Fundamentals of Primary Stability Theory 441  
        15.2.3 Orr–Sommerfeld Equation 443  
        15.2.4 Curve of Neutral Stability and the Indifference Reynolds Number 450  
        15.2.4a Plate Boundary Layer 452  
        15.2.4b Effect of Pressure Gradient 461  
        15.2.4c Effect of Suction 473  
        15.2.4d Effect of Wall Heat Transfer 476  
        15.2.4e Effect of Compressibility 479  
        15.2.4f Effect of Wall Roughness 483  
        15.2.4g Further Effects 488  
     15.3 Instability of the Boundary Layer for Three–Dimensional Perturbations 489  
        15.3.1 Remark 489  
        15.3.2 Fundamentals of Secondary Stability Theory 492  
        15.3.3 Boundary Layers at Curved Walls 497  
        15.3.4 Boundary Layer at a Rotating Disk 501  
        15.3.5 Three–Dimensional Boundary Layers 503  
     15.4 Local Perturbations 509  
  Part IVTurbulent Boundary Layers 513  
  16. Fundamentals of Turbulent Flows 514  
     16.1 Remark 514  
     16.2 Mean Motion and Fluctuations 516  
     16.3 Basic Equations for the Mean Motion of Turbulent Flows 519  
        16.3.1 Continuity Equation 519  
        16.3.2 Momentum Equations (Reynolds Equations) 520  
        16.3.3 Equation for the Kinetic Energy of the Turbulent Fluctuations ( 522  
        Equation) 522  
        16.3.4 Thermal Energy Equation 525  
     16.4 Closure Problem 526  
     16.5 Description of the Turbulent Fluctuations 527  
        16.5.1 Correlations 527  
        16.5.2 Spectra and Eddies 528  
        16.5.3 Turbulence of the Outer Flow 530  
        16.5.4 Edges of Turbulent Regions and Intermittence 530  
     16.6 Boundary–Layer Equations for Plane Flows 531  
  17. Internal Flows 534  
     17.1 Couette Flow 534  
        17.1.1 Two–Layer Structure of the Velocity Field and the Logarithmic Overlap Law 534  
        17.1.2 Universal Laws of the Wall 539  
        17.1.3 Friction Law 551  
        17.1.4 Turbulence Models 553  
        17.1.5 Heat Transfer 556  
     17.2 Fully Developed Internal Flows (A = const) 558  
        17.2.1 Channel Flow 558  
        17.2.2 Couette–Poiseuille Flows 559  
        17.2.3 Pipe Flow 564  
     17.3 Slender–Channel Theory 569  
  18. Turbulent Boundary Layers without Coupling of the Velocity Fieldto the Temperature Field 572  
     18.1 Turbulence Models 572  
        18.1.1 Remark 572  
        18.1.2 Algebraic Turbulence Models 574  
        18.1.3 Turbulent Energy Equation 575  
        18.1.4 Two–Equation Models 577  
        18.1.5 Reynolds Stress Models 580  
        18.1.6 Heat Transfer Models 583  
        18.1.7 Low–Reynolds–Number Models 585  
        18.1.8 Large–Eddy Simulation and Direct Numerical Simulation 586  
     18.2 Attached Boundary Layers (?w = 0) 587  
        18.2.1 Layered Structure 587  
        18.2.2 Boundary–Layer Equations Using the Defect Formulation 589  
        18.2.3 Friction Law and Characterisitic Quantities of the Boundary Layer 592  
        18.2.4 Equilibrium Boundary Layers 595  
        18.2.5 Boundary Layer on a Plate at Zero Incidence 597  
     18.3 Boundary Layers with Separation 604  
        18.3.1 Stratford Flow 604  
        18.3.2 Quasi–Equilibrium Boundary Layers 606  
     18.4 Computation of Boundary Layers Using Integral Methods 609  
        18.4.1 Direct Method 609  
        18.4.2 Inverse Method 612  
     18.5 Computation of Boundary Layers Using Field Methods 613  
        18.5.1 Attached Boundary Layers (?w = 0) 613  
        18.5.2 Boundary Layers with Separation 616  
        18.5.3 Low–Reynolds–Number Turbulence Models 618  
        18.5.4 Additional Effects 619  
     18.6 Computation of Thermal Boundary Layers 622  
        18.6.1 Fundamentals 622  
        18.6.2 Computation of Thermal Boundary Layers Using Field Methods 624  
  19. Turbulent Boundary Layers with Coupling of the Velocity Fieldto the Temperature Field 626  
     19.1 Fundamental Equations 626  
        19.1.1 Time Averaging for Variable Density 626  
        19.1.2 Boundary–Layer Equations 628  
     19.2 Compressible Turbulent Boundary Layers 632  
        19.2.1 Temperature Field 632  
        19.2.2 Overlap Law 634  
        19.2.3 Skin–Friction Coefficient and Nusselt Number 636  
        19.2.4 Integral Methods for Adiabatic Walls 638  
        19.2.5 Field Methods 640  
        19.2.6 Shock–Boundary–Layer Interaction 640  
     19.3 Natural Convection 642  
  20. Axisymmetric and Three–DimensionalTurbulent Boundary Layers 645  
     20.1 Axisymmetric Boundary Layers 645  
        20.1.1 Boundary–Layer Equations 645  
        20.1.2 Boundary Layers without Body Rotation 646  
        20.1.3 Boundary Layers with Body Rotation 649  
     20.2 Three–Dimensional Boundary Layers 651  
        20.2.1 Boundary–Layer Equations 651  
        20.2.2 Computation Methods 655  
        20.2.3 Examples 657  
  21. Unsteady Turbulent Boundary Layers 658  
     21.1 Averaging and Boundary–Layer Equations 658  
     21.2 Computation Methods 661  
     21.3 Examples 662  
  22. Turbulent Free Shear Flows 665  
     22.1 Remark 665  
     22.2 Equations for Plane Free Shear Layers 667  
     22.3 Plane Free Jet 671  
        22.3.1 Global Balances 671  
        22.3.2 Far Field 672  
        22.3.3 Near Field 677  
        22.3.4 Wall Effects 677  
     22.4 Mixing Layer 679  
     22.5 Plane Wake 681  
     22.6 Axisymmetric Free Shear Flows 683  
        22.6.1 Basic Equations 683  
        22.6.2 Free Jet (U? = 0, = 8?(x ? x0)) 684  
        22.6.3 Wake (|UN| U?, = ?(x ? x0)1/3) 685  
     22.7 Buoyant Jets 687  
        22.7.1 Plane Buoyant Jet 687  
        22.7.2 Axisymmetric Buoyant Jet 688  
     22.8 Plane Wall Jet 689  
  Part V Numerical Methods in Boundary–LayerTheory 693  
  23. Numerical Integrationof the Boundary–Layer Equations 694  
     23.1 Laminar Boundary Layers 694  
        23.1.1 Remark 694  
        23.1.2 Note on Boundary–Layer Transformations 695  
        23.1.3 Explicit and Implicit Discretisation 696  
        23.1.4 Solution of the Implicit Difference Equations 700  
        23.1.5 Integration of the Continuity Equation 702  
        23.1.6 Boundary–Layer Edge and Wall Shear Stress 702  
        23.1.7 Integration of the Transformed Boundary–Layer Equations Using the Box Scheme 703  
     23.2 Turbulent Boundary Layers 706  
        23.2.1 Method of Wall Functions 706  
        23.2.2 Low–Reynolds–Number Turbulence Models 711  
     23.3 Unsteady Boundary Layers 712  
     23.4 Steady Three–Dimensional Boundary Layers 714  
  List of Frequently Used Symbols 719  
     Indices 725  
     Other Symbols 726  
  References and Index of Authors 727  
  Index 808  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz