Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Analog Integrated Circuit Design Automation - Placement, Routing and Parasitic Extraction Techniques
  Großes Bild
 
Analog Integrated Circuit Design Automation - Placement, Routing and Parasitic Extraction Techniques
von: Ricardo Martins, Nuno Lourenço, Nuno Horta
Springer-Verlag, 2016
ISBN: 9783319340609
220 Seiten, Download: 11083 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Dedication 6  
  Preface 8  
  Contents 12  
  Abbreviations 16  
  Chapter 1: Introduction 18  
     1.1 The AMS IC Design Flow 18  
     1.2 Motivation for Analog Design Automation 21  
     1.3 Analog Layout Automation 23  
     1.4 Advances to the State-of-the-Art 25  
     1.5 Conclusion 26  
     References 27  
  Chapter 2: State-of-the-Art on Analog Layout Automation 28  
     2.1 Placement 29  
        2.1.1 Analog Topological Constraints 29  
        2.1.2 Floorplan Representations 30  
           2.1.2.1 Absolute Representation 30  
           2.1.2.2 Relative Representation 31  
              Slicing 31  
              Non-slicing 32  
        2.1.3 Challenges in Modern Analog Placement 34  
           2.1.3.1 Pareto Front of Placement Solutions 34  
           2.1.3.2 Thermal-Driven Placement 36  
           2.1.3.3 Current-Driven Placement 36  
        2.1.4 Optimization Algorithm of Choice: Simulated Annealing 37  
        2.1.5 Commercial Solutions 37  
     2.2 Routing 38  
        2.2.1 From Netlist to Pathfinding 38  
        2.2.2 Electromigration and IR-Drop 39  
        2.2.3 Electromigration-Aware Approaches 40  
        2.2.4 Wiring Symmetry 41  
        2.2.5 Commercial Solutions 41  
     2.3 Complete Layout Generation Tools 42  
        2.3.1 Procedural Generation 42  
        2.3.2 Template-Based 42  
        2.3.3 Optimization-Based 43  
        2.3.4 Commercial Solutions 44  
     2.4 Closing the Gap Between Electrical and Physical Design 46  
        2.4.1 Circuit Sizing Task 47  
        2.4.2 Layout Generators Embedded in Layout-Aware Approaches 47  
        2.4.3 Parasitic Extractors Used in Layout-Aware Approaches 48  
     2.5 Overview of the State-of-the-Art on Analog Layout Automation 49  
        2.5.1 Support User-Assisted Placement Generation 49  
        2.5.2 Support Fully-Automatic Placement Generation 51  
        2.5.3 Alleviate Designer from the Routing Task 52  
        2.5.4 Embedding in a Layout-Aware Circuit Sizing Methodology 52  
     2.6 Conclusions 53  
     References 53  
  Chapter 3: AIDA-L: Architecture and Integration 59  
     3.1 Standalone Design Flow 59  
        3.1.1 User-Assisted Floorplan Generation 60  
        3.1.2 Fully-Automatic Floorplan Generation 62  
     3.2 Standalone Design Flow 63  
        3.2.1 Inputs 64  
           3.2.1.1 Template-Based Placer: Hierarchical High Level Floorplan and Devices’ Sizes 64  
           3.2.1.2 Optimization-Based Placer: Topological Constraints, Devices’ Sizes, Current-Flows and Electric-Current Values 65  
           3.2.1.3 Router: Netlist and Electric-Current Values 65  
        3.2.2 Outputs 67  
        3.2.3 Technology Design Kit and AIDA-AMG 67  
        3.2.4 Graphical User Interface 68  
        3.2.5 Automatic Layout Generation Using AIDA-L 69  
     3.3 Integration on AIDA’s Framework 70  
        3.3.1 Layout-Aware Design Flow 71  
        3.3.2 Floorplan-Aware Loop 72  
        3.3.3 Parasitic-Aware Loop 73  
     3.4 Conclusion 74  
     References 75  
  Chapter 4: Template-Based Placer 76  
     4.1 Template-Based Placer Architecture 76  
     4.2 XML Description for Template-Based Placement 78  
        4.2.1 Automatic Generation from the Netlist 78  
        4.2.2 Designer Guidelines 80  
     4.3 B*-Tree Extraction 83  
     4.4 Instantiation: AIDA’s Analog Module Generator 84  
        4.4.1 Supported Structures 86  
        4.4.2 Biasing 88  
        4.4.3 Handling of Complex Layout Structures 89  
        4.4.4 Multiport Terminals 89  
     4.5 B*-Tree Packing 91  
     4.6 Case Study: Simple Differential Amplifier 91  
        4.6.1 Floorplan Generation: Design 1 92  
        4.6.2 Retargeting Operation: Design 2 93  
        4.6.3 Retargeting Operation: Design 3 94  
     4.7 Conclusion 95  
     References 96  
  Chapter 5: Optimization-Based Placer 97  
     5.1 Optimization-Based Placer Architecture 98  
     5.2 Constrained Archive-Based Multi-Objective Simulated Annealing Algorithm 99  
      Dominance Measures 101  
        5.2.1 Double Annealing Schedule 102  
        5.2.2 Archive Compaction 103  
     5.3 XML Description for Optimization-Based Placement 103  
     5.4 Hierarchical Placement Optimization in Absolute Coordinates 104  
        5.4.1 Analog Constraints and Proximity Groups 104  
        5.4.2 Absolute Coordinates’ Problem Definition 108  
        5.4.3 Multi-Objective Hierarchical Framework 109  
     5.5 Current-Flow and Current-Density Considerations 110  
        5.5.1 Current-Flow Constraints 110  
        5.5.2 Current-Density Considerations 113  
        5.5.3 Application in the Hierarchical Framework 114  
     5.6 Conclusion 115  
     References 117  
  Chapter 6: Fully-Automatic Router 119  
     6.1 Router Architecture 119  
        6.1.1 Evolution of AIDA-L’s Routing Paradigm 120  
        6.1.2 Current Architecture/Design Flow 120  
     6.2 Electromigration-Aware Wiring Planner 123  
        6.2.1 Electromigration and IR-Drop-Reliable Interconnects’ Widths 124  
        6.2.2 Problem Formulation 125  
        6.2.3 Optimal Wire Planning 127  
           6.2.3.1 Network Graph 127  
           6.2.3.2 Residual Network 128  
           6.2.3.3 Negative Cycle Cancelling 129  
        6.2.4 Strongly Connected Network 130  
     6.3 Symmetry Planner 131  
        6.3.1 Symmetry Extraction 131  
        6.3.2 Wire Symmetry Analysis 132  
     6.4 Global Router: Step I—Multilayer Multiport Selection 134  
        6.4.1 Multiport Multiterminal Signal Nets 134  
        6.4.2 Multilayer Multiport Obstacle-Aware Grid 135  
        6.4.3 Multiport Selection 137  
        6.4.4 Wiring Symmetry in the Pathfinding Algorithm 139  
     6.5 Global Router: Step II—Steiner Point Assignment 140  
        6.5.1 Basic Assignment 140  
        6.5.2 Assignment over Obstacles 141  
        6.5.3 Symmetry Considerations 141  
     6.6 Detailed Router 144  
        6.6.1 Evolutionary Algorithm 145  
        6.6.2 Chromosome Structure 146  
        6.6.3 Optimization Phases 147  
     6.7 Conclusion 148  
     References 149  
  Chapter 7: Empirical-Based Parasitic Extractor 151  
     7.1 Empirical-Based Parasitic Extractor Architecture 151  
     7.2 Intercap Models Processing 152  
     7.3 RC Extraction 154  
        7.3.1 Parasitic Resistance 157  
        7.3.2 Parasitic Capacitances 158  
           7.3.2.1 Substrate Capacitance 159  
           7.3.2.2 Lateral Capacitance 159  
           7.3.2.3 2.5-D Capacitance 160  
        7.3.3 Geometrical Considerations 161  
     7.4 Case Study: Single Ended Two-Stage Amplifier 161  
     7.5 Conclusion 168  
     References 169  
  Chapter 8: Experimental Results 170  
     8.1 Organization of the Results 170  
     8.2 Case Study I: Single Stage Amplifier with Gain Enhancement Using Voltage Combiner 172  
        8.2.1 Inputs: Template File Definition and Floorplan-Aware Circuit Sizing 172  
        8.2.2 Layout Generation: Template-Based Placer 174  
        8.2.3 Layout Generation: Optimization-Based Placer with Current-Flow and Current-Density Considerations 177  
     8.3 Case Study II: Single Ended Two-Stage Amplifier 180  
        8.3.1 Inputs: Template File Definition and Floorplan-Aware Circuit Sizing 180  
        8.3.2 Layout Generation: Template-Based Placer 183  
        8.3.3 Parasitic Extraction and Layout-Aware Circuit Sizing 186  
     8.4 Case Study III: Two-Stage Folded Cascode Amplifier 188  
        8.4.1 Parasitic Extraction and Layout-Aware Circuit Sizing 188  
        8.4.2 Layout Generation: Optimization-Based Placer 192  
        8.4.3 Layout Generation: Optimization-Based Placer with Current-Flow and Current-Density Considerations 194  
     8.5 Case Study IV: Operational Transconductance Amplifier 196  
     8.6 Benchmarks 200  
        8.6.1 Optimization-Based Placer Benchmark: Single-Objective vs. Multi-Objective 200  
        8.6.2 MCNC Benchmarks: Optimization-Based Placer vs. Topological 203  
        8.6.3 Routing Benchmark: Single-Port vs. Multiport 205  
     8.7 Conclusion 205  
     References 211  
  Chapter 9: Conclusions and Future Work 212  
     9.1 Conclusions 212  
     9.2 Future Work 214  
        9.2.1 Improved Efficiency 214  
        9.2.2 Radio-Frequency 214  
        9.2.3 Deep-Nanometer Technologies 215  
  Index 216  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz