Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Biologically Inspired Control of Humanoid Robot Arms - Robust and Adaptive Approaches
  Großes Bild
 
Biologically Inspired Control of Humanoid Robot Arms - Robust and Adaptive Approaches
von: Adam Spiers, Said Ghani Khan, Guido Herrmann
Springer-Verlag, 2016
ISBN: 9783319301600
286 Seiten, Download: 11137 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 8  
  Contents 12  
  Nomenclature 18  
  1 Introduction 21  
     1.1 Prologue 21  
        1.1.1 Industrial Robots 22  
        1.1.2 Humanoid Robots 24  
        1.1.3 The Importance of Human-Like Motion 25  
        1.1.4 Biologically Inspired Design 26  
        1.1.5 Physical Safety and Active Compliance for Safety 26  
        1.1.6 Robust and Adaptive Control 27  
     1.2 Objective of the Book 27  
     1.3 Guidance for the Reader 28  
        1.3.1 Recommended Reading Routes 29  
     References 30  
  Part I Background on Humanoid Robots and Human Motion 33  
     2 Humanoid Robots and Control 34  
        2.1 Humanoid Robots 34  
           2.1.1 Functional Tools 35  
           2.1.2 Models of Humans 36  
           2.1.3 Human–Robot Interaction 36  
        2.2 Goals of Human-Like Motion 37  
        2.3 Robot Motion Control Overview 38  
           2.3.1 Kinematics-Based Robot Motion Control 40  
              2.3.1.1 Forward Kinematics 41  
              2.3.1.2 Inverse Kinematics 41  
              2.3.1.3 Basic Inverse Kinematics Example 42  
              2.3.1.4 Kinematics Control Discussion 43  
           2.3.2 Dynamic-Based Robot Motion Control 44  
              2.3.2.1 Dynamic Modelling 45  
              2.3.2.2 Model Specification 46  
           2.3.3 Optimal Control 47  
           2.3.4 Operational Space Control 48  
           2.3.5 Dual Robot Arm Control 49  
           2.3.6 Hand Grasping Control 50  
        2.4 Sensing and Robot Arm Motion 51  
        2.5 Robot and Control Hardware 52  
           2.5.1 Elumotion Robotic Platform 53  
           2.5.2 Robot Structure 56  
           2.5.3 Actuators 58  
           2.5.4 Motor Drivers 58  
           2.5.5 EPOS Interface method 59  
        2.6 Summary 60  
        References 60  
     3 Human Motion 67  
        3.1 Introduction 67  
        3.2 Motion Studies 68  
        3.3 Motion Models 69  
           3.3.1 Kinematic Models 69  
           3.3.2 Dynamic Models 71  
        3.4 Physiological Modelling 73  
           3.4.1 Muscle Models 73  
           3.4.2 Physiological Complexity 74  
           3.4.3 Neural Models 75  
           3.4.4 Simplified Models 77  
        3.5 Motion Capture Methods and Technology 77  
        3.6 Human Motion Reproduction and Synthesis 81  
           3.6.1 Direct Reproduction of Human Motion 81  
           3.6.2 Learning Techniques 84  
           3.6.3 Dynamic Movement Primitives 85  
           3.6.4 Operational Space Control 86  
        3.7 Summary 86  
        References 88  
  Part II Robot Control: Implementation 93  
     4 Basic Operational Space Controller 94  
        4.1 Introduction 94  
           4.1.1 Human Verification 95  
           4.1.2 Robot Specification 96  
           4.1.3 Robot Goal Modification 98  
        4.2 The Operational Space Mathematical Formulation 98  
        4.3 Task Control 99  
           4.3.1 Jacobian Pseudo Inverse 99  
           4.3.2 Task-Space Dynamic Projection 100  
           4.3.3 Feedback Linearisation 102  
        4.4 Posture Control 103  
           4.4.1 `Effort' Cost Function 103  
           4.4.2 Task/Posture Isolation 106  
        4.5 Simulation and Implementation 107  
           4.5.1 Controller Realisation 107  
           4.5.2 Simulation Results 109  
              4.5.2.1 Task Only Control 109  
              4.5.2.2 Posture-Dependent Trajectories 109  
           4.5.3 Robot Implementation 114  
              4.5.3.1 Increased Gains 115  
        4.6 Summary 116  
        References 117  
     5 Sliding Mode Task Controller Modification 118  
        5.1 Introduction 118  
        5.2 Sliding Mode Control Overview 119  
        5.3 Controller Design 120  
           5.3.1 Switching Function 120  
           5.3.2 Variable Structure Law 122  
        5.4 Lyapunov Stability Analysis 124  
        5.5 Results 125  
           5.5.1 Simulation 125  
           5.5.2 Physical Robot 128  
           5.5.3 PID Results 128  
           5.5.4 Sliding Mode Results 129  
           5.5.5 Demand Filter 130  
        5.6 Compliance 131  
        5.7 Summary 131  
        References 132  
     6 Implementing `Discomfort' for Smooth Joint Limits 133  
        6.1 Introduction 133  
           6.1.1 Dynamic Model Simplicity 134  
        6.2 Visualisation Technique 135  
           6.2.1 Motion Analysis 137  
        6.3 Joint Limit Function Design 138  
           6.3.1 Integration with the Effort Function 139  
        6.4 Results 140  
           6.4.1 Simulated Results 140  
           6.4.2 Practical Results 142  
        6.5 Summary 144  
        References 146  
     7 Sliding Mode Optimal Controller 147  
        7.1 Introduction 147  
        7.2 Controller Design 148  
           7.2.1 Optimal Sliding Surface 148  
              7.2.1.1 Modified Model for Analysis and Controller Design 149  
              7.2.1.2 Lyapunov Analysis of Surface 150  
           7.2.2 Control Method 151  
              7.2.2.1 Controller Design 151  
              7.2.2.2 Controller Design with Estimates 152  
           7.2.3 Velocity Decoupling 154  
              7.2.3.1 Cost Function Revision for Decoupling 157  
              7.2.3.2 Observation on the Cost Function Dynamics 158  
              7.2.3.3 Sliding Mode Analysis for Posture Control Only 159  
           7.2.4 Overall Controller 160  
        7.3 Implementation Issues: Viscous Friction Identification and Compensation 162  
        7.4 Simulated Implementation 163  
           7.4.1 Controller Effort 165  
           7.4.2 Friction Model 167  
           7.4.3 Simulated Results 167  
        7.5 Practical Implementation 172  
        7.6 Summary 174  
        References 175  
     8 Adaptive Compliance Control with Anti-windup Compensation and Posture Control 176  
        8.1 Introduction 176  
        8.2 Adaptive Compliance Control for Task Motion 178  
           8.2.1 Impedance Reference Model 180  
           8.2.2 Principle of the Model Reference Scheme 181  
        8.3 Effort-Minimising Posture Torque Controller 182  
        8.4 Anti-windup Compensator 183  
        8.5 Implementation 186  
        8.6 One-Dimensional Adaptive Compliance Control of a Robot Arm 186  
           8.6.1 Tracking 186  
           8.6.2 Compliance Results 188  
           8.6.3 Anti-windup Compensator Results 189  
        8.7 Multidimensional Adaptive Compliance Control of a Robot Arm 196  
           8.7.1 Joint Torque Sensors and Body Torque Estimates 197  
           8.7.2 Tracking and Compliance Results 200  
           8.7.3 Anti-windup Compensator Results 200  
        8.8 Summary 205  
        References 205  
  Part III Human Motion Recording for Task Motion Modelling and Robot Arm Control 207  
     9 Human Motion Recording and Analysis 208  
        9.1 Initial Motion Capture Objective 208  
           9.1.1 The Vicon System 212  
           9.1.2 Experimental Set-up 213  
           9.1.3 Results 214  
           9.1.4 Summary of Initial Motion Capture Experiments 216  
        9.2 Motion Capture for Robotic Implementation 219  
           9.2.1 Human–Robot Kinematic Mismatch 219  
           9.2.2 Motion Capture Process for Inconsistent Kinematic Models 221  
           9.2.3 Extended Motion Capture Method 223  
           9.2.4 Vicon Skeleton Model 225  
           9.2.5 Incompatible Kinematics Removal 226  
           9.2.6 Inverse Kinematics 228  
           9.2.7 Trajectory Discrepancy 230  
        9.3 Four Degrees of Freedom Comparative Trials 231  
           9.3.1 Results 232  
        9.4 Summary 234  
        References 235  
     10 Neural Network Motion Learning by Observation for Task Modelling and Control 237  
        10.1 Introduction 237  
           10.1.1 Learning by Observation 238  
        10.2 Learning by Observation Method 240  
        10.3 Minimal Trajectory Encoding 241  
           10.3.1 Polynomial Encoding Issues 241  
           10.3.2 Scaling and Fitting of Generated Trajectories 243  
        10.4 Network Structure 245  
        10.5 Experimental Procedure 246  
           10.5.1 Sub-motion Splitting 247  
           10.5.2 Training Data 247  
           10.5.3 Neural Network Results 249  
        10.6 Integration into the Robot Controller 252  
        10.7 Summary 257  
        References 257  
  Appendix A Kinematics: Introduction 259  
     A.1 Kinematics Notation 259  
        A.1.1 Position Vector 260  
        A.1.2 Rotation Matrix 261  
        A.1.3 Transformation Matrix 263  
     A.2 Denavit–Hartenberg Notation 263  
        A.2.1 Frame Assignment Convention 264  
        A.2.2 DH Parameters 264  
     A.3 Applied Kinematics 265  
        A.3.1 Forward Kinematics 265  
        A.3.2 Inverse Kinematics 266  
     A.4 Robot Jacobian 266  
     References 267  
  Appendix B Inverse Kinematics for BERUL2 268  
     B.1 Denavit–Hartenberg Parameters 268  
     B.2 Forward Kinematics 268  
     B.3 Algebraic Solution 269  
     Reference 275  
  Appendix C Theoretical Summary of Adaptive Compliant Controller 276  
     C.1 Proof of Theorem 1 276  
     References 280  
  Appendix D List of Videos 282  
  Index 283  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz