Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Atmospheric Chemistry and Physics - From Air Pollution to Climate Change
  Großes Bild
 
Atmospheric Chemistry and Physics - From Air Pollution to Climate Change
von: John H. Seinfeld, Spyros N. Pandis
Wiley, 2016
ISBN: 9781119221166
1152 Seiten, Download: 84075 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Cover 1  
  Title Page 5  
  Copyright 6  
  Dedication 7  
  Content 9  
  Preface to the First Edition 25  
  Preface to the Third Edition 27  
  Part I: The Atmosphere and Its Constituents 29  
     Chapter 1: The Atmosphere 31  
        1.1 History and Evolution of Earth's Atmosphere 31  
        1.2 Climate 33  
        1.3 Layers of the Atmosphere 33  
        1.4 Pressure in the Atmosphere 35  
           1.4.1 Units of Pressure 35  
           1.4.2 Variation of Pressure with Height in the Atmosphere 35  
        1.5 Temperature in the Atmosphere 38  
        1.6 Expressing the Amount of a Substance in the Atmosphere 38  
        1.7 Airborne Particles 42  
        1.8 Spatial and Temporal Scales of Atmospheric Processes 42  
        Problems 44  
        References 45  
     Chapter 2: Atmospheric Trace Constituents 46  
        2.1 Atmospheric Lifetime 47  
        2.2 Sulfur-Containing Compounds 51  
           2.2.1 Dimethyl Sulfide (CH3SCH3) 54  
           2.2.2 Carbonyl Sulfide (OCS) 54  
           2.2.3 Sulfur Dioxide (SO2) 55  
        2.3 Nitrogen-Containing Compounds 55  
           2.3.1 Nitrous Oxide (N2O) 56  
           2.3.2 Nitrogen Oxides (NOx = NO + NO2) 57  
           2.3.3 Reactive Odd Nitrogen (NOy) 58  
           2.3.4 Ammonia (NH3) 59  
           2.3.5 Amines 60  
        2.4 Carbon-Containing Compounds 60  
           2.4.1 Classification of Hydrocarbons 60  
           2.4.2 Methane 62  
           2.4.3 Volatile Organic Compounds 64  
           2.4.4 Biogenic Hydrocarbons 64  
           2.4.5 Carbon Monoxide 67  
           2.4.6 Carbon Dioxide 68  
        2.5 Halogen-Containing Compounds 68  
           2.5.1 Methyl Chloride (CH3Cl) 70  
           2.5.2 Methyl Bromide (CH3Br) 70  
        2.6 Atmospheric Ozone 72  
        2.7 Particulate Matter (Aerosols) 75  
           2.7.1 Stratospheric Aerosol 76  
           2.7.2 Chemical Components of Tropospheric Aerosol 76  
           2.7.3 Cloud Condensation Nuclei (CCN) 77  
           2.7.4 Sizes of Atmospheric Particles 77  
           2.7.5 Carbonaceous Particles 79  
           2.7.6 Mineral Dust 81  
           2.7.7 Biomass Burning 81  
           2.7.8 Summary of Atmospheric Particulate Matter 82  
        2.8 Mercury 83  
        2.9 Emission Inventories 83  
        Appendix 2.1 Us Air Pollution Legislation 84  
        Appendix 2.2 Hazardous Air Pollutants (Air Toxics) 85  
        Problems 87  
        References 89  
  Part II: Atmospheric Chemistry 95  
     Chapter 3: Chemical Kinetics 97  
        3.1 Order of Reaction 97  
        3.2 Theories of Chemical Kinetics 99  
           3.2.1 Collision Theory 99  
           3.2.2 Transition State Theory 102  
           3.2.3 Potential Energy Surface for a Bimolecular Reaction 103  
        3.3 The Pseudo-Steady-State Approximation 104  
        3.4 Reactions of Excited Species 105  
        3.5 Termolecular Reactions 106  
        3.6 Chemical Families 109  
        3.7 Gas-Surface Reactions 111  
        Problems 112  
        References 115  
     Chapter 4: Atmospheric Radiation and Photochemistry 116  
        4.1 Radiation 116  
        4.2 Radiative Flux in the Atmosphere 119  
        4.3 Beer-Lambert Law and Optical Depth 121  
        4.4 Actinic Flux 123  
        4.5 Atmospheric Photochemistry 125  
        4.6 Absorption of Radiation By Atmospheric Gases 128  
        4.7 Absorption By O2 and O3 133  
        4.8 Photolysis Rate As a Function of Altitude 137  
        4.9 Photodissociation of O3 to Produce O and O(D) 140  
        4.10 Photodissociation of No2 142  
        Problems 145  
        References 145  
     Chapter 5: Chemistry of the Stratosphere 147  
        5.1 Chapman Mechanism 150  
        5.2 Nitrogen Oxide Cycles 157  
           5.2.1 Stratospheric Source of NOx from N2O 157  
           5.2.2 NOx Cycles 159  
        5.3 Hox Cycles 162  
        5.4 Halogen Cycles 167  
           5.4.1 Chlorine Cycles 168  
           5.4.2 Bromine Cycles 171  
        5.5 Reservoir Species and Coupling of the Cycles 172  
        5.6 Ozone Hole 174  
           5.6.1 Polar Stratospheric Clouds (PSCs) 177  
           5.6.2 PSCs and the Ozone Hole 178  
           5.6.3 Arctic Ozone Hole 181  
        5.7 Heterogeneous (Nonpolar) Stratospheric Chemistry 183  
           5.7.1 The Stratospheric Aerosol Layer 183  
           5.7.2 Heterogeneous Hydrolysis of N2O5 183  
           5.7.3 Effect of Volcanoes on Stratospheric Ozone 188  
        5.8 Summary of Stratospheric Ozone Depletion 190  
        5.9 Transport and Mixing in the Stratosphere 193  
        5.10 Ozone Depletion Potential 195  
        Problems 196  
        References 201  
     Chapter 6: Chemistry of the Troposphere 203  
        6.1 Production of Hydroxyl Radicals in the Troposphere 204  
        6.2 Basic Photochemical Cycle of No2, No, and O3 207  
        6.3 Atmospheric Chemistry of Carbon Monoxide 209  
           6.3.1 Low-NOx Limit 211  
           6.3.2 High-NOx Limit 212  
           6.3.3 Ozone Production Efficiency 212  
           6.3.4 Theoretical Maximum Yield of Ozone from CO Oxidation 216  
        6.4 Atmospheric Chemistry of Methane 216  
        6.5 The Nox and Noy Families 220  
           6.5.1 Daytime Behavior 220  
           6.5.2 Nighttime Behavior 221  
        6.6 Ozone Budget of the Troposphere and Role of Nox 223  
           6.6.1 Ozone Budget of the Troposphere 223  
           6.6.2 Role of NOx 223  
           6.6.3 Global Hydroxyl Radical Budget 225  
        6.7 Tropospheric Reservoir Molecules 231  
           6.7.1 H2O2, CH3OOH, and Hydroperoxides 231  
           6.7.2 Nitrous Acid (HONO) 232  
           6.7.3 Peroxyacyl Nitrates (PANs) 232  
        6.8 Relative Roles of Voc and Nox in Ozone Formation 236  
           6.8.1 Importance of the VOC/NOx Ratio 236  
           6.8.2 Ozone Isopleth Plot 237  
           6.8.3 Weekend Ozone Effect 239  
        6.9 Simplified Organic/Nox Chemistry 240  
        6.10 Chemistry of Nonmethane Organic Compounds in the Troposphere 242  
           6.10.1 Alkanes 243  
           6.10.2 Alkenes 250  
              6.10.2.1 OH Reaction 251  
              6.10.2.2 NO3 Reaction 253  
              6.10.2.3 Ozone Reaction 255  
           6.10.3 Aromatics 256  
           6.10.4 Aldehydes 258  
           6.10.5 Ketones 258  
           6.10.6 Ethers 259  
           6.10.7 Alcohols 259  
           6.10.8 Tropospheric Lifetimes of Organic Compounds 260  
        6.11 Atmospheric Chemistry of Biogenic Hydrocarbons 261  
           6.11.1 Atmospheric Chemistry of Isoprene 261  
              6.11.1.1 Isoprene + OH 262  
              6.11.1.2 Isoprene + O3 266  
              6.11.1.3 Isoprene + NO3 266  
              6.11.1.4 Chemistry of Isoprene Oxidation Products: Methacrolein and Methyl Vinyl Ketone 267  
           6.11.2 Monoterpenes (?-Pinene) 269  
              6.11.2.1 ?-Pinene + O3 270  
              6.11.2.2 ?-Pinene + OH 270  
        6.12 Atmospheric Chemistry of Reduced Nitrogen Compounds 272  
           6.12.1 Amines 273  
           6.12.2 Nitriles 274  
           6.12.3 Nitrites 274  
        6.13 Atmospheric Chemistry (Gas Phase) of Sulfur Compounds 274  
           6.13.1 Sulfur Oxides 274  
           6.13.2 Reduced Sulfur Compounds (Dimethyl Sulfide) 275  
        6.14 Tropospheric Chemistry of Halogen Compounds 277  
           6.14.1 Chemical Cycles of Halogen Species 277  
           6.14.2 Tropospheric Chemistry of CFC Replacements: Hydrofluorocarbons (HFCs) and Hydrochlorofluorocarbons (HCFCs) 279  
        6.15 Atmospheric Chemistry of Mercury 281  
        Appendix 6 Organic Functional Groups 282  
        Problems 284  
        References 287  
     Chapter 7: Chemistry of the Atmospheric Aqueous Phase 293  
        7.1 Liquid Water in the Atmosphere 293  
        7.2 Absorption Equilibria and Henry's Law 296  
        7.3 Aqueous-Phase Chemical Equilibria 299  
           7.3.1 Water 299  
           7.3.2 Carbon Dioxide-Water Equilibrium 300  
           7.3.3 Sulfur Dioxide-Water Equilibrium 302  
           7.3.4 Ammonia-Water Equilibrium 306  
           7.3.5 Nitric Acid-Water Equilibrium 308  
           7.3.6 Equilibria of Other Important Atmospheric Gases 309  
              7.3.6.1 Hydrogen Peroxide 309  
              7.3.6.2 Ozone 310  
              7.3.6.3 Oxides of Nitrogen 310  
              7.3.6.4 Formaldehyde 310  
              7.3.6.5 Formic and Other Atmospheric Acids 311  
              7.3.6.6 OH and HO2 Radicals 312  
        7.4 Aqueous-Phase Reaction Rates 312  
        7.5 S(IV)-S(VI) Transformation and Sulfur Chemistry 314  
           7.5.1 Oxidation of S(IV) by Dissolved O3 314  
           7.5.2 Oxidation of S(IV) by Hydrogen Peroxide 317  
           7.5.3 Oxidation of S(IV) by Organic Peroxides 318  
           7.5.4 Uncatalyzed Oxidation of S(IV) by O2 319  
           7.5.5 Oxidation of S(IV) by O2 Catalyzed by Iron and Manganese 319  
              7.5.5.1 Iron Catalysis 319  
              7.5.5.2 Manganese Catalysis 321  
              7.5.5.3 Iron/Manganese Synergism 321  
           7.5.6 Comparison of Aqueous-Phase S(IV) Oxidation Paths 321  
        7.6 Dynamic Behavior of Solutions With Aqueous-Phase Chemical Reactions 323  
           7.6.1 Closed System 324  
           7.6.2 Calculation of Concentration Changes in a Droplet with Aqueous-Phase Reactions 326  
        Appendix 7.1 Thermodynamic and Kinetic Data 329  
        Appendix 7.2 Additional Aqueous-Phase Sulfur Chemistry 333  
           7A.1 S(IV) Oxidation by the OH Radical 333  
           7A.2 Oxidation of S(IV) by Oxides of Nitrogen 336  
           7A.3 Reaction of Dissolved SO2 with HCHO 337  
        Appendix 7.3 Aqueous-Phase Nitrite and Nitrate Chemistry 339  
           7A.4 NOx Oxidation 339  
           7A.5 Nitrogen Radicals 339  
        Appendix 7.4 Aqueous-Phase Organic Chemistry 340  
        Appendix 7.5 Oxygen and Hydrogen Chemistry 341  
        Problems 342  
        References 345  
  Part III: Aerosols 351  
     Chapter 8: Properties of the Atmospheric Aerosol 353  
        8.1 The Size Distribution Function 353  
           8.1.1 The Number Distribution nN(Dp) 356  
           8.1.2 The Surface Area, Volume, and Mass Distributions 358  
           8.1.3 Distributions Based on ln Dp and log Dp 359  
           8.1.4 Relating Size Distributions Based on Different Independent Variables 361  
           8.1.5 Properties of Size Distributions 362  
           8.1.6 Definition of the Lognormal Distribution 363  
           8.1.7 Plotting the Lognormal Distribution 366  
           8.1.8 Properties of the Lognormal Distribution 367  
        8.2 Ambient Aerosol Size Distributions 370  
           8.2.1 Urban Aerosols 371  
           8.2.2 Marine Aerosols 372  
           8.2.3 Rural Continental Aerosols 375  
           8.2.4 Remote Continental Aerosols 376  
           8.2.5 Free Tropospheric Aerosols 376  
           8.2.6 Polar Aerosols 377  
           8.2.7 Desert Aerosols 377  
        8.3 Aerosol Chemical Composition 380  
        8.4 Spatiotemporal Variation 382  
        Problems 385  
        References 387  
     Chapter 9: Dynamics of Single Aerosol Particles 390  
        9.1 Continuum and Noncontinuum Dynamics: the Mean Free Path 390  
           9.1.1 Mean Free Path of a Pure Gas 391  
           9.1.2 Mean Free Path of a Gas in a Binary Mixture 393  
        9.2 The Drag on a Single Particle: Stokes' Law 396  
           9.2.1 Corrections to Stokes' Law: The Drag Coefficient 399  
           9.2.2 Stokes' Law and Noncontinuum Effects: Slip Correction Factor 399  
        9.3 Gravitational Settling of an Aerosol Particle 400  
        9.4 Motion of an Aerosol Particle in an External Force Field 404  
        9.5 Brownian Motion of Aerosol Particles 404  
           9.5.1 Particle Diffusion 407  
           9.5.2 Aerosol Mobility and Drift Velocity 409  
           9.5.3 Mean Free Path of an Aerosol Particle 412  
        9.6 Aerosol and Fluid Motion 413  
           9.6.1 Motion of a Particle in an Idealized Flow (90° Corner) 414  
           9.6.2 Stop Distance and Stokes Number 415  
        9.7 Equivalent Particle Diameters 416  
           9.7.1 Volume Equivalent Diameter 416  
           9.7.2 Stokes Diameter 418  
           9.7.3 Classical Aerodynamic Diameter 419  
           9.7.4 Electrical Mobility Equivalent Diameter 421  
        Problems 421  
        References 422  
     Chapter 10: Thermodynamics of Aerosols 424  
        10.1 Thermodynamic Principles 424  
           10.1.1 Internal Energy and Chemical Potential 424  
           10.1.2 The Gibbs Free Energy G 426  
           10.1.3 Conditions for Chemical Equilibrium 428  
           10.1.4 Chemical Potentials of Ideal Gases and Ideal-Gas Mixtures 430  
              10.1.4.1 The Single Ideal Gas 431  
              10.1.4.2 The Ideal-Gas Mixture 431  
           10.1.5 Chemical Potential of Solutions 432  
              10.1.5.1 Ideal Solutions 432  
              10.1.5.2 Nonideal Solutions 435  
              10.1.5.3 Pure Solid Compounds 435  
              10.1.5.4 Solutions of Electrolytes 436  
           10.1.6 The Equilibrium Constant 436  
        10.2 Aerosol Liquid Water Content 437  
           10.2.1 Chemical Potential of Water in Atmospheric Particles 439  
           10.2.2 Temperature Dependence of the DRH 440  
           10.2.3 Deliquescence of Multicomponent Aerosols 443  
           10.2.4 Crystallization of Single- and Multicomponent Salts 447  
        10.3 Equilibrium Vapor Pressure Over a Curved Surface: the Kelvin Effect 447  
        10.4 Thermodynamics of Atmospheric Aerosol Systems 451  
           10.4.1 The H2SO4-H2O System 451  
           10.4.2 The Sulfuric Acid-Ammonia-Water System 455  
           10.4.3 The Ammonia-Nitric Acid-Water System 458  
              10.4.3.1 Ammonium Nitrate Solutions 460  
           10.4.4 The Ammonia-Nitric Acid-Sulfuric Acid-Water System 462  
           10.4.5 Other Inorganic Aerosol Species 467  
           10.4.6 Organic Aerosol 468  
        10.5 Aerosol Thermodynamic Models 468  
        Problems 470  
        References 471  
     Chapter 11: Nucleation 476  
        11.1 Classical Theory of Homogeneous Nucleation: Kinetic Approach 477  
           11.1.1 The Forward Rate Constant ?i 480  
           11.1.2 The Reverse Rate Constant ?i 481  
           11.1.3 Derivation of the Nucleation Rate 481  
        11.2 Classical Homogeneous Nucleation Theory: Constrained Equilibrium Approach 485  
           11.2.1 Free Energy of i-mer Formation 485  
           11.2.2 Constrained Equilibrium Cluster Distribution 487  
           11.2.3 The Evaporation Coefficient ?i 489  
           11.2.4 Nucleation Rate 489  
        11.3 Recapitulation of Classical Theory 492  
        11.4 Experimental Measurement of Nucleation Rates 493  
           11.4.1 Upward Thermal Diffusion Cloud Chamber 494  
           11.4.2 Fast Expansion Chamber 494  
           11.4.3 Turbulent Mixing Chambers 495  
        11.5 Modifications of the Classical Theory and More Rigorous Approaches 495  
        11.6 Binary Homogeneous Nucleation 496  
        11.7 Binary Nucleation in the H2so4-H2o System 501  
        11.8 Nucleation on an Insoluble Foreign Surface 503  
        11.9 Ion-Induced Nucleation 506  
        11.10 Atmospheric New-Particle Formation 508  
           11.10.1 Molecular Constituency of New Particles 509  
           11.10.2 New-Particle Growth Rates 510  
           11.10.3 CLOUD Studies of Atmospheric Nucleation 510  
           11.10.4 Atmospheric Nucleation by Organic Species 515  
        Appendix 11 the Law of Mass Action 515  
        Problems 517  
        References 518  
     Chapter 12: Mass Transfer Aspects of Atmospheric Chemistry 521  
        12.1 Mass and Heat Transfer to Atmospheric Particles 521  
           12.1.1 The Continuum Regime 521  
           12.1.2 The Kinetic Regime 525  
           12.1.3 The Transition Regime 525  
              12.1.3.1 Fuchs Theory 525  
              12.1.3.2 Fuchs-Sutugin Approach 526  
              12.1.3.3 Dahneke Approach 527  
              12.1.3.4 Loyalka Approach 527  
              12.1.3.5 Sitarski-Nowakowski Approach 527  
           12.1.4 The Accommodation Coefficient 528  
        12.2 Mass Transport Limitations in Aqueous-Phase Chemistry 531  
           12.2.1 Characteristic Time for Gas-Phase Diffusion to a Particle 533  
           12.2.2 Characteristic Time to Achieve Equilibrium at the Gas-Liquid Interface 534  
           12.2.3 Characteristic Time of Aqueous Dissociation Reactions 536  
           12.2.4 Characteristic Time of Aqueous-Phase Diffusion in a Droplet 538  
           12.2.5 Characteristic Time for Aqueous-Phase Chemical Reactions 539  
        12.3 Mass Transport and Aqueous-Phase Chemistry 539  
           12.3.1 Gas-Phase Diffusion and Aqueous-Phase Reactions 540  
           12.3.2 Aqueous-Phase Diffusion and Reaction 542  
           12.3.3 Interfacial Mass Transport and Aqueous-Phase Reactions 543  
           12.3.4 Application to the S(IV)-Ozone Reaction 545  
           12.3.5 Application to the S(IV)-Hydrogen Peroxide Reaction 547  
           12.3.6 Calculation of Aqueous-Phase Reaction Rates 548  
              12.3.6.1 No Mass Transport Limitations 548  
              12.3.6.2 Aqueous-Phase Mass Transport Limitation 548  
              12.3.6.3 Gas-Phase Limitation 551  
              12.3.6.4 Interfacial Limitation 551  
              12.3.6.5 Gas-Phase Plus Interfacial Limitation 551  
           12.3.7 An Aqueous-Phase Chemistry/Mass Transport Model 553  
        12.4 Mass Transfer to Falling Drops 554  
        12.5 Characteristic Time for Atmospheric Aerosol Equilibrium 555  
           12.5.1 Solid Aerosol Particles 556  
           12.5.2 Aqueous Aerosol Particles 557  
        12. Appendix 12 Solution of the Transient Gas-Phase Diffusion 560  
        Problems 561  
        References 563  
     Chapter 13: Dynamics of Aerosol Populations 565  
        13.1 Mathematical Representations of Aerosol Size Distributions 565  
           13.1.1 Discrete Distribution 565  
           13.1.2 Continuous Distribution 566  
        13.2 Condensation 566  
           13.2.1 The Condensation Equation 566  
           13.2.2 Solution of the Condensation Equation 568  
        13.3 Coagulation 572  
           13.3.1 Brownian Coagulation 572  
              13.3.1.1 Continuum Regime 572  
              13.3.1.2 Transition and Free Molecular Regime 575  
              13.3.1.3 Coagulation Rates 576  
              13.3.1.4 Collision Efficiency 578  
           13.3.2 The Coagulation Equation 579  
              13.3.2.1 The Discrete Coagulation Equation 579  
              13.3.2.2 The Continuous Coagulation Equation 581  
           13.3.3 Solution of the Coagulation Equation 581  
              13.3.3.1 Discrete Coagulation Equation 581  
              13.3.3.2 Continuous Coagulation Equation 583  
        13.4 The Discrete General Dynamic Equation 585  
        13.5 The Continuous General Dynamic Equation 586  
        Appendix 13.1 Additional Mechanisms of Coagulation 588  
           13.A.1 Coagulation in Laminar Shear Flow 588  
           13.A.2 Coagulation in Turbulent Flow 588  
           13.A.3 Coagulation from Gravitational Settling 589  
           13.A.4 Brownian Coagulation and External Force Fields 590  
              13.A.4.1 Van der Waals Forces 590  
              13.A.4.2 Coulomb Forces 592  
              13.A.4.3 Hydrodynamic Forces 593  
        Appendix 13.2 Solution of (13.73) 595  
        Problems 596  
        References 599  
     Chapter 14: Atmospheric Organic Aerosols 601  
        14.1 Chemistry of Secondary Organic Aerosol Formation 602  
           14.1.1 Oxidation State of Organic Compounds 604  
           14.1.2 Generation of Highly Oxygenated Species by Autoxidation 607  
        14.2 Volatility of Organic Compounds 610  
        14.3 Idealized Description of Secondary Organic Aerosol Formation 611  
           14.3.1 Noninteracting Secondary Organic Aerosol Compounds 611  
           14.3.2 Formation of Binary Ideal Solution with Preexisting Aerosol 614  
           14.3.3 Formation of Binary Ideal Solution with Other Organic Vapor 616  
        14.4 Gas-Particle Partitioning 618  
           14.4.1 Gas-Particle Equilibrium 618  
           14.4.2 Effect of Aerosol Water on Gas-Particle Partitioning 622  
        14.5 Models of Soa Formation and Evolution 624  
           14.5.1 The Volatility Basis Set 625  
           14.5.2 Two-Dimensional SOA Models 631  
              14.5.2.1 Two-Dimensional VBS 631  
              14.5.2.2 Statistical Oxidation Model (SOM) 632  
              14.5.2.3 Carbon Number-Polarity Grid (CNPG) 633  
              14.5.2.4 Functional Group Oxidation Model (FGOM) 633  
              14.5.2.5 Conclusion 633  
        14.6 Primary Organic Aerosol 633  
        14.7 The Physical State of Organic Aerosols 636  
        14.8 Soa Particle-Phase Chemistry 638  
           14.8.1 Particle-Phase Accretion Reactions 640  
           14.8.2 Heterogeneous Gas-Aerosol Reactions 640  
        14.9 Aqueous-Phase Secondary Organic Aerosol Formation 643  
           14.9.1 Gas- versus Aqueous-Phase Routes to SOA 644  
           14.9.2 Sources of OH Radicals in the Aqueous Phase 646  
           14.9.3 Glyoxal as a Source of aqSOA 647  
        14.10 Estimates of the Global Budget of Atmospheric Organic Aerosol 650  
           14.10.1 Estimate Based on Total VOC Emissions 650  
           14.10.2 Sulfate Lifetime and Ratio of Organic to Sulfate 650  
           14.10.3 Atmospheric Burden and Lifetime of SOA 651  
           14.10.4 Satellite Measurements 651  
        Problems 651  
        References 654  
     Chapter 15: Interaction of Aerosols with Radiation 661  
        15.1 Scattering and Absorption of Light By Small Particles 661  
           15.1.1 Rayleigh Scattering Regime 666  
           15.1.2 Geometric Scattering Regime 668  
           15.1.3 Scattering Phase Function 668  
           15.1.4 Extinction by an Ensemble of Particles 668  
        15.2 Visibility 672  
        15.3 Scattering, Absorption, and Extinction Coefficients From Mie Theory 675  
        15.4 Calculated Visibility Reduction Based on Atmospheric Data 679  
        Appendix 15 Calculation of Scattering and Extinction Coefficients By Mie Theory 682  
        Problems 682  
        References 684  
  Part IV: Physical and Dynamic Meteorology, Cloud Physics, and Atmospheric Diffusion 687  
     Chapter 16: Physical and Dynamic Meteorology 689  
        16.1 Temperature in the Lower Atmosphere 689  
        16.2 Atmospheric Stability 693  
        16.3 The Moist Atmosphere 698  
           16.3.1 The Gas Constant for Moist Air 699  
           16.3.2 Level of Cloud Formation: The Lifting Condensation Level 699  
           16.3.3 Dew-point and Wet-Bulb Temperatures 701  
           16.3.4 The Moist Adiabatic Lapse Rate 703  
           16.3.5 Stability of Moist Air 707  
           16.3.6 Convective Available Potential Energy (CAPE) 708  
           16.3.7 Thermodynamic Diagrams 709  
        16.4 Basic Conservation Equations for the Atmospheric Surface Layer 711  
           16.4.1 Turbulence 715  
           16.4.2 Equations for the Mean Quantities 716  
           16.4.3 Mixing-Length Models for Turbulent Transport 718  
        16.5 Variation of Wind With Height in the Atmosphere 720  
           16.5.1 Mean Velocity in the Adiabatic Surface Layer over a Smooth Surface 721  
           16.5.2 Mean Velocity in the Adiabatic Surface Layer over a Rough Surface 722  
           16.5.3 Mean Velocity Profiles in the Nonadiabatic Surface Layer 723  
           16.5.4 The Pasquill Stability Classes-Estimation of L 726  
           16.5.5 Empirical Equation for the Mean Windspeed 728  
        Appendix 16.1 Properties of Water and Water Solutions 729  
           16.A.1 Specific Heat of Water and Ice 729  
           16.A.2 Latent Heats of Vaporization and Melting for Water 729  
           16.A.3 Water Surface Tension 729  
        Appendix 16.2 Derivation of the Basic Equations of Surface-Layer Atmospheric Fluid Mechanics 730  
        Problems 733  
        References 734  
     Chapter 17: Cloud Physics 736  
        17.1 Equilibrium of Water Droplets in the Atmosphere 736  
           17.1.1 Equilibrium of a Pure Water Droplet 736  
           17.1.2 Equilibrium of a Flat Water Solution 738  
           17.1.3 Atmospheric Equilibrium of an Aqueous Solution Drop 740  
              17.1.3.1 Stability of Atmospheric Droplets 743  
           17.1.4 Atmospheric Equilibrium of an Aqueous Solution Drop Containing an Insoluble Substance 745  
        17.2 Cloud and Fog Formation 747  
           17.2.1 Isobaric Cooling 748  
           17.2.2 Adiabatic Cooling 748  
           17.2.3 A Simplified Mathematical Description of Cloud Formation 749  
        17.3 Growth Rate of Individual Cloud Droplets 751  
        17.4 Growth of a Droplet Population 754  
        17.5 Cloud Condensation Nuclei 758  
           17.5.1 Ambient CCN 761  
           17.5.2 The Hygroscopic Parameter Kappa 761  
        17.6 Cloud Processing of Aerosols 764  
           17.6.1 Nucleation Scavenging of Aerosols by Clouds 764  
           17.6.2 Chemical Composition of Cloud Droplets 765  
           17.6.3 Nonraining Cloud Effects on Aerosol Concentrations 767  
           17.6.4 Interstitial Aerosol Scavenging by Cloud Droplets 770  
        17.7 Other Forms of Water in the Atmosphere 771  
           17.7.1 Ice Clouds 771  
              17.7.1.1 Freezing-Point Depression 772  
              17.7.1.2 Curvature Effects 774  
              17.7.1.3 Ice Nucleating Particles (INP) 774  
           17.7.2 Rain 775  
              17.7.2.1 Raindrop Distributions 778  
        Appendix 17 Extended Köhler Theory 779  
           17.1 Modified Form of Köhler Theory for a Soluble Trace Gas 779  
           17.2 Modified Form of Köhler Theory for a Slightly Soluble Substance 782  
           17.3 Modified Form of Köhler Theory for a Surface-Active Solute 783  
           17.4 Examples 784  
        Problems 787  
        References 788  
     Chapter 18: Atmospheric Diffusion 791  
        18.1 Eulerian Approach 791  
        18.2 Lagrangian Approach 794  
        18.3 Comparison of Eulerian and Lagrangian Approaches 795  
        18.4 Equations Governing the Mean Concentration of Species in Turbulence 795  
           18.4.1 Eulerian Approaches 795  
           18.4.2 Lagrangian Approaches 797  
        18.5 Solution of the Atmospheric Diffusion Equation For an Instantaneous Source 799  
        18.6 Mean Concentration from Continuous Sources 800  
           18.6.1 Lagrangian Approach 800  
              18.6.1.1 An Alternate Derivation of (18.42) 802  
              18.6.1.2 Still Another Derivation of (18.42) 804  
           18.6.2 Eulerian Approach 804  
              18.6.2.1 An Alternate Derivation of (18.55) 805  
           18.6.3 Summary of Continuous Point Source Solutions 805  
        18.7 Statistical Theory of Turbulent Diffusion 806  
           18.7.1 Qualitative Features of Atmospheric Diffusion 806  
           18.7.2 Motion of a Single Particle Relative to a Fixed Axis 808  
        18.8 Summary of Atmospheric Diffusion Theories 811  
        18.9 Analytical Solutions for Atmospheric Diffusion: the Gaussian Plume Equation and Others 812  
           18.9.1 Gaussian Concentration Distributions 812  
              18.9.1.1 Total Reflection at z = 0 813  
              18.9.1.2 Total Absorption at z = 0 813  
           18.9.2 Derivation of the Gaussian Plume Equation as a Solution of the Atmospheric Diffusion Equation 814  
              18.9.2.1 Solution of (18.90) to (18.92) 815  
           18.9.3 Summary of Gaussian Point Source Diffusion Formulas 819  
        18.10 Dispersion Parameters in Gaussian Models 819  
           18.10.1 Correlations for ?y and ?z Based on Similarity Theory 819  
           18.10.2 Correlations for ?y and ?z Based on Pasquill Stability Classes 823  
        18.11 Plume Rise 824  
        18.12 Functional Forms of Mean Windspeed and Eddy Diffusivities 826  
           18.12.1 Mean Windspeed 828  
           18.12.2 Vertical Eddy Diffusion Coefficient Kzz 828  
              18.12.2.1 Unstable Conditions 828  
              18.12.2.2 Neutral Conditions 829  
              18.12.2.3 Stable Conditions 831  
           18.12.3 Horizontal Eddy Diffusion Coefficients Kxx and Kyy 831  
        18.13 Solutions of The Steady-State Atmospheric Diffusion Equation 831  
           18.13.1 Diffusion from a Point Source 832  
           18.13.2 Diffusion from a Line Source 833  
        APPENDIX 18.1 Further Solutions of Atmospheric Diffusion Problems 835  
           18A.1 Solution of (18.29)–(18.31) 835  
           18A.2 Solution of (18.50) and (18.51) 837  
           18A.3 Solution of (18.59)–(18.61) 838  
        APPENDIX 18.2 Analytical Properties of the Gaussian Plume Equation 839  
        Problems 843  
        REFERENCES 851  
  Part V: Dry and Wet Deposition 855  
     Chapter 19: Dry Deposition 857  
        19.1 Deposition Velocity 857  
        19.2 Resistance Model for Dry Deposition 858  
        19.3 Aerodynamic Resistance 862  
        19.4 Quasilaminar Resistance 863  
           19.4.1 Gases 864  
           19.4.2 Particles 864  
        19.5 Surface Resistance 867  
           19.5.1 Surface Resistance for Dry Deposition of Gases to Water 869  
           19.5.2 Surface Resistance for Dry Deposition of Gases to Vegetation 873  
        19.6 Measurement of Dry Deposition 877  
           19.6.1 Direct Methods 877  
              19.6.1.1 Surrogate Surfaces 877  
              19.6.1.2 Natural Surfaces 877  
              19.6.1.3 Chamber Method 878  
              19.6.1.4 Eddy Correlation 878  
              19.6.1.5 Eddy Accumulation 878  
           19.6.2 Indirect Methods 878  
              19.6.2.1 Gradient Method 878  
              19.6.2.2 Inferential Method 879  
           19.6.3 Comparison of Methods 879  
        19.7 Some Comments on Modeling and Measurement of Dry Deposition 879  
        Problems 880  
        References 882  
     Chapter 20: Wet Deposition 884  
        20.1 General Representation of Atmospheric Wet Removal Processesƒ 884  
        20.2 Below-Cloud Scavenging of Gases 888  
           20.2.1 Below-Cloud Scavenging of an Irreversibly Soluble Gas 889  
           20.2.2 Below-Cloud Scavenging of a Reversibly Soluble Gas 892  
        20.3 Precipitation Scavenging of Particles 896  
           20.3.1 Raindrop-Aerosol Collision Efficiency 898  
           20.3.2 Scavenging Rates 899  
        20.4 In-Cloud Scavenging 901  
        20.5 Acid Deposition 902  
           20.5.1 Acid Rain Overview 902  
              20.5.1.1 Historical Perspective 902  
              20.5.1.2 Definition of the Problem 903  
           20.5.2 Surface Water Acidification 904  
           20.5.3 Cloudwater Deposition 905  
           20.5.4 Fogs and Wet Deposition 905  
        20.6 Acid Deposition Process Synthesis 906  
           20.6.1 Chemical Species Involved in Acid Deposition 906  
           20.6.2 Dry versus Wet Deposition 906  
           20.6.3 Chemical Pathways for Sulfate and Nitrate Production 906  
           20.6.4 Source-Receptor Relationships 907  
           20.6.5 Linearity 908  
        Problems 909  
        References 914  
  Part VI: The Global Atmosphere, Biogeochemical Cycles, and Climate 917  
     Chapter 21: General Circulation of the Atmosphere 919  
        21.1 Hadley Cell 921  
        21.2 Ferrell Cell and Polar Cell 921  
        21.3 Coriolis Force 923  
        21.4 Geostrophic Windspeed 925  
           21.4.1 Buys Ballot's Law 927  
           21.4.2 Ekman Spiral 928  
        21.5 The Thermal Wind Relation 930  
        21.6 Stratospheric Dynamics 933  
        21.7 The Hydrologic Cycle 933  
        Problems 934  
        References 935  
     Chapter 22: Global Cycles: Sulfur and Carbon 936  
        22.1 The Atmospheric Sulfur Cycle 936  
        22.2 The Global Carbon Cycle 940  
           22.2.1 Carbon Dioxide 940  
           22.2.2 Compartmental Model of the Global Carbon Cycle 942  
           22.2.3 Atmospheric Lifetime of CO2 949  
        22.3 Solution for a Steady-State Four-Compartment Model of the Atmosphere 951  
        Problems 955  
        References 957  
     Chapter 23: Global Climate 959  
        23.1 Earth'S Energy Balance 959  
        23.2 Radiative Forcing 961  
           23.2.1 Climate Sensitivity 962  
           23.2.2 Climate Feedbacks 963  
           23.2.3 Timescales of Climate Change 963  
        23.3 The Greenhouse Effect 964  
        23.4 Climate-Forcing Agents 970  
           23.4.1 Solar Irradiance 970  
           23.4.2 Greenhouse Gases 973  
           23.4.3 Radiative Efficiencies of Greenhouse Gases 974  
           23.4.4 Aerosols 974  
           23.4.5 Summary of IPCC (2013) Estimated Forcing 975  
           23.4.6 The Preindustrial Atmosphere 976  
        23.5 Cosmic Rays and Climate 977  
        23.6 Climate Sensitivity 978  
        23.7 Simplified Dynamic Description of Climate Forcing and Responseƒ 979  
           23.7.1 Response to a Perturbation of Earth's Radiative Equilibrium 979  
           23.7.2 Physical Interpretation of Feedback Factors 982  
        23.8 Climate Feedbacks 983  
           23.8.1 Water Vapor Feedback 983  
           23.8.2 Lapse Rate Feedback 984  
           23.8.3 Cloud Feedback 984  
           23.8.4 Arctic Sea Ice Feedback 986  
           23.8.5 Summary of Feedbacks 986  
        23.9 Relative Radiative Forcing Indices 988  
        23.10 Atmospheric Chemistry and Climate Change 989  
           23.10.1 Indirect Chemical Impacts 990  
           23.10.2 Atmospheric Lifetimes and Adjustment Times 991  
        23.11 Conclusion 992  
        Problems 993  
        References 995  
     Chapter 24: Aerosols and Climate 998  
        24.1 Scattering-Absorbing Model of an Aerosol Layer 1000  
        24.2 Cooling Versus Heating of an Aerosol Layer 1003  
        24.3 Scattering Model of an Aerosol Layer for a Nonabsorbing Aerosol 1005  
        24.4 Upscatter Fraction 1007  
        24.5 Optical Depth and Column Forcing 1009  
        24.6 Internal and External Mixtures 1013  
        24.7 Top-Of-The-Atmosphere Versus Surface Forcing 1015  
        24.8 Indirect Effects of Aerosols on Climate 1018  
           24.8.1 Stratocumulus Clouds 1019  
           24.8.2 Simplified Model for Cloud Albedo 1021  
           24.8.3 Albedo Susceptibility: Simplified Model 1023  
           24.8.4 Albedo Susceptibility: Additional Considerations 1025  
           24.8.5 A General Equation for Cloud Albedo Susceptibility 1027  
           24.8.6 Estimating Indirect Aerosol Forcing on Climate 1031  
        Problems 1031  
        References 1032  
  Part VII: Chemical Transport Models and Statistical Models 1037  
     Chapter 25: Atmospheric Chemical Transport Models 1039  
        25.1 Introduction 1039  
           25.1.1 Model Types 1040  
           25.1.2 Types of Atmospheric Chemical Transport Models 1041  
        25.2 Box Models 1042  
           25.2.1 The Eulerian Box Model 1043  
           25.2.2 A Lagrangian Box Model 1045  
        25.3 Three-Dimensional Atmospheric Chemical Transport Models 1048  
           25.3.1 Coordinate System-Uneven Terrain 1048  
           25.3.2 Initial Conditions 1050  
           25.3.3 Boundary Conditions 1051  
        25.4 One-Dimensional Lagrangian Models 1052  
        25.5 Other Forms of Chemical Transport Models 1054  
           25.5.1 Atmospheric Diffusion Equation Expressed in Terms of Mixing Ratio 1054  
           25.5.2 Pressure-Based Coordinate System 1057  
           25.5.3 Spherical Coordinates 1059  
        25.6 Numerical Solution of Chemical Transport Models 1059  
           25.6.1 Coupling Problem-Operator Splitting 1060  
              25.6.1.1 Finite Difference Methods 1060  
              25.6.1.2 Finite Element Methods 1062  
              25.6.1.3 Operator Splitting 1063  
           25.6.2 Chemical Kinetics 1065  
              25.6.2.1 Backward Differentiation Methods 1068  
              25.6.2.2 Asymptotic Methods 1068  
           25.6.3 Diffusion 1069  
           25.6.4 Advection 1070  
        25.7 Model Evaluation 1074  
        25.8 Response of Organic and Inorganic Aerosols to Changes in Emission 1075  
        Problems 1076  
        References 1078  
     Chapter 26: Statistical Models 1079  
        26.1 Receptor Modeling Methods 1079  
        26.2 Chemical Mass Balance (Cmb) 1082  
           26.2.1 CMB Evaluation 1086  
           26.2.2 CMB Resolution 1087  
           26.2.3 CMB Codes 1087  
        26.3 Factor Analysis 1087  
           26.3.1 Principal-Component Analysis (PCA) 1089  
           26.3.2 Positive Matrix Factorization (PMF) 1092  
              26.3.2.1 Uncertainties and Missing Values 1092  
              26.3.2.2 Extreme Values 1093  
              26.3.2.3 Choice of Number of Factors 1093  
              26.3.2.4 Rotational Ambiguity 1094  
              26.3.2.5 The Multilinear Engine (ME) 1095  
        26.4 Methods Incorporating Wind Information 1095  
           26.4.1 Potential Source Contribution Function (PSCF) 1096  
           26.4.2 Empirical Orthogonal Function (EOF) 1098  
        26.5 Probability Distributions for Air Pollutant Concentrations 1100  
           26.5.1 The Lognormal Distribution 1101  
           26.5.2 The Weibull Distribution 1102  
        26.6 Estimation of Parameters in the Distributions 1102  
           26.6.1 Method of Quantiles 1103  
           26.6.2 Method of Moments 1104  
        26.7 Order Statistics of Air Quality Data 1106  
           26.7.1 Basic Notions and Terminology of Order Statistics 1106  
           26.7.2 Extreme Values 1107  
        26.8 Exceedances of Critical Levels 1108  
        26.9 Alternative Forms of Air Quality Standards 1108  
        26.10 Relating Current and Future Air Pollutant Statistical Distributions 1111  
        Problems 1113  
        References 1115  
  Appendix A: Units and Physical Constants 1119  
     A.1 Si Base Units 1119  
     A.2 Si Derived Units 1120  
     A.3 Fundamental Physical Constants 1122  
     A.4 Properties of the Atmosphere and Water 1122  
     A.5 Units for Representing Chemical Reactions 1124  
     A.6 Concentrations in the Aqueous Phase 1124  
     A.7 Symbols Denoting Concentration 1125  
     References 1125  
  Appendix B: Rate Constants of Atmospheric Chemical Reactions 1126  
     References 1134  
  Appendix C: Abbreviations 1135  
  Index 1140  
  EULA 1149  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz