Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Recent Trends in Nanomaterials - Synthesis and Properties
  Großes Bild
 
Recent Trends in Nanomaterials - Synthesis and Properties
von: Zishan Husain Khan
Springer-Verlag, 2017
ISBN: 9789811038426
315 Seiten, Download: 11164 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Foreword 6  
  Acknowledgements 8  
  Contents 10  
  About the Editor 12  
  1 Graphene Oxide: Synthesis and Characterization 14  
     1.1 Introduction 14  
     1.2 Synthesis of Graphene Oxide/Reduced Graphene Oxide 17  
        1.2.1 Oxidation of Graphite 17  
           1.2.1.1 Broodie’s Method 18  
           1.2.1.2 Hummer’s Method 18  
           1.2.1.3 Tour’s Method 19  
        1.2.2 Exfoliation of Graphene Oxide 19  
           1.2.2.1 Chemical Exfoliation of Graphene Oxide 19  
           1.2.2.2 Thermal Exfoliation of Graphene Oxide 20  
        1.2.3 Reduction of Graphene Oxide 20  
           1.2.3.1 Thermal Annealing 22  
           1.2.3.2 Reduction Using High-Energy Radiations 23  
           1.2.3.3 Chemical Reduction of Graphene Oxide 24  
     1.3 Characterizations of Graphene Oxide 27  
     1.4 Conclusion 35  
     References 35  
  2 Wear Behavior of Composites and Nanocomposites: A New Approach 42  
     2.1 Wear 42  
     2.2 Types of Wear 42  
        2.2.1 Adhesive Wear 43  
        2.2.2 Abrasive Wear 44  
        2.2.3 Corrosive Wear 47  
        2.2.4 Fatigue Wear 48  
           2.2.4.1 Rolling Contact 48  
           2.2.4.2 Sliding Contact 49  
     2.3 Analysis of Wear Debris 49  
     2.4 Composites and Nanocomposites 50  
        2.4.1 Classification of Composites 51  
           2.4.1.1 Polymer Matrix Composites (PMCs) 51  
           2.4.1.2 Metal Matrix Composites (MMCs) 52  
           2.4.1.3 Ceramic Matrix Composites (CMCs) 53  
        2.4.2 Advantages of Composites 53  
        2.4.3 Limitations of Composites 54  
     2.5 Wear of Metals, Ceramics and Polymers 54  
        2.5.1 Wear of Metals 54  
        2.5.2 Wear of Ceramics 56  
        2.5.3 Wear of Polymers 57  
     2.6 Factors Affecting Reduction of Wear 58  
     2.7 Wear Behavior of Fe–Al2O3 Metal Matrix Nanocomposites 58  
     References 60  
  3 Nanoparticles as Targeted Drug Delivery Agents: Synthesis, Mechanism and Applications 62  
     3.1 Introduction 62  
     3.2 Targeted Drug Delivery 63  
     3.3 Significance of Nanoparticles in Drug Delivery 64  
     3.4 Nanoparticle-Based Drug Delivery Platforms 65  
        3.4.1 Liposomes 65  
        3.4.2 Dendrimers 66  
        3.4.3 Magnetic Nanoparticles 67  
        3.4.4 Hydrogels 67  
        3.4.5 Polymeric Micelles 68  
        3.4.6 Gold Nanoparticles 69  
     3.5 Applications of Nanoparticles in Drug Delivery 69  
     3.6 Conclusions 73  
     Acknowledgements 74  
     References 74  
  4 Synthesis, Characterization and Applications of Graphene Quantum Dots 77  
     4.1 Introduction 77  
     4.2 Properties 77  
        4.2.1 Optical Properties 77  
           4.2.1.1 Photoluminescence 77  
           4.2.1.2 Up-conversion 80  
           4.2.1.3 Electrochemical Luminescence 83  
           4.2.1.4 Cytotoxicity 85  
     4.3 Characterization 86  
        4.3.1 Optical Characterization 87  
           4.3.1.1 UV–Visible Spectroscopy 87  
           4.3.1.2 Raman Spectroscopy 87  
           4.3.1.3 Photoluminescence Spectroscopy 87  
        4.3.2 Microscopy Characterization 88  
           4.3.2.1 Transmission Electron Microscopy (TEM) 88  
           4.3.2.2 Atomic Force Microscopy (AFM) 88  
        4.3.3 Surface State Characterization 90  
           4.3.3.1 Fourier Transform Infrared Spectrometer (FT-IR) 90  
           4.3.3.2 X-ray Photoelectron Spectroscopy (XPS) 91  
     4.4 Synthesis 91  
        4.4.1 Top-Down Approach 91  
           4.4.1.1 Chemical Ablation Methods 91  
           4.4.1.2 Electrochemical Method 94  
           4.4.1.3 Physical Method 97  
        4.4.2 Bottom-Up Approach 97  
           4.4.2.1 Cage Opening of Fullerene 97  
           4.4.2.2 GQDs Derived from Organic Molecules 99  
     4.5 Applications 101  
        4.5.1 Bioimaging or Biolabelling 101  
        4.5.2 Biosensing 103  
        4.5.3 Immunosensing 103  
        4.5.4 Drug Delivery 103  
        4.5.5 Light-Emitting Diode 107  
        4.5.6 Sensors 109  
        4.5.7 Photoluminescence (PL) Sensor 109  
        4.5.8 Electrochemical (EC) Sensor 111  
        4.5.9 Electrochemiluminescence (ECL) Sensor 113  
        4.5.10 Catalysis 116  
           4.5.10.1 Electrocatalysis—Oxygen Reduction Reaction (ORR) in Fuel Cells 116  
           4.5.10.2 Photocatalysis 120  
           4.5.10.3 Energy-Related Application 121  
              Photovoltaics (PV) 121  
     4.6 Prospect of GQDs 122  
     References 122  
  5 Graphene/Metal Nanowire Hybrid Transparent Conductive Films 133  
     5.1 Introduction 133  
     5.2 Graphene-Based Transparent Conductive Films 135  
     5.3 Metal Nanowire-Based Transparent Conductive Films 138  
     5.4 RG-O/Cu NW Hybrid Transparent Conductive Films 140  
     5.5 CVD-Graphene/Metal Nanowire Hybrid Transparent Conductive Films 143  
     5.6 Applications of Graphene/Metal Nanowire Hybrid Films 147  
        5.6.1 Application of RG-O/Cu NW Transparent Electrodes in EC Devices 147  
        5.6.2 Application of CVD-Graphene/Ag NW Transparent Electrodes in EC Devices 150  
     5.7 Conclusions and Future Challenges 151  
     Acknowledgements 152  
     References 152  
  6 Antibacterial Applications of Nanomaterials 155  
     6.1 Introduction 155  
     6.2 Mechanism of Antibacterial Action 157  
     6.3 Synthesis Procedure 158  
     6.4 Antibacterial Test Protocols 159  
     6.5 Antimicrobial Activity of Pure and Doped ZnO 159  
        6.5.1 Effect of Doping on Minimum Inhibitory Concentration (MIC) 160  
        6.5.2 Effect of Doping on Zone of Inhibition (ZOI) 162  
        6.5.3 Growth of Bacterial Cells in Presence of Co-doped ZnO 164  
     6.6 Bacterial Biofilm 165  
        6.6.1 Inhibition of Microbial Biofilm Using Nanoantibiotic 166  
     6.7 Summary 167  
     References 167  
  7 Facile Synthesis of Large Surface Area Graphene and Its Applications 171  
     7.1 Introduction 171  
     7.2 Conclusions 183  
     Acknowledgements 184  
     References 184  
  8 Carbon Nanomaterials Derived from Graphene and Graphene Oxide Nanosheets 188  
     8.1 Brief Introduction 188  
     8.2 Graphene Fibers (1D) 189  
        8.2.1 Solution Processing from Graphene Oxide (GO) 189  
        8.2.2 Hydrothermal Approach 195  
        8.2.3 Chemical Vapor Deposition (CVD) 198  
        8.2.4 Graphene Ribbon Fibers from Unzipped CNTs 200  
        8.2.5 Other Methods 202  
     8.3 Graphene-Based Free-Standing Papers (2D) 203  
        8.3.1 Membrane Vacuum Filtration 204  
        8.3.2 Other Methods 209  
           8.3.2.1 Solvent Direct Evaporation 209  
           8.3.2.2 Tape Casting 210  
           8.3.2.3 Electro-spray Deposition 213  
           8.3.2.4 Interface Self-Assembly 214  
           8.3.2.5 Chemical Vapor Deposition (CVD) 216  
     8.4 Graphene 3D Monoliths 217  
        8.4.1 Solution Processes 217  
           8.4.1.1 Gelation of GO 217  
           8.4.1.2 Centrifugal Evaporation-Induced Assembly of GO 224  
           8.4.1.3 In Situ Gelation of RGO 225  
              Hydrothermal Reduction in GO 226  
              Chemical Reduction in GO 228  
        8.4.2 Interface Self-Assembly 233  
           8.4.2.1 Breath-Figure-Templated Assembly 233  
           8.4.2.2 Flow-Directed Self-Assembly 235  
              Leavening Strategy 235  
              KOH Activation of RGO Porous Structures 236  
        8.4.3 Templating Approaches 237  
           8.4.3.1 Templated Chemical Vapor Deposition (CVD) 237  
           8.4.3.2 Ice-Templated Unidirectional Freezing 238  
        8.4.4 3D Printing 239  
        8.4.5 Miscellaneous 240  
     8.5 Concluding Remarks 242  
     References 242  
  9 GaN Nanowall Network: Laser Assisted Molecular Beam Epitaxy Growth and Properties 255  
     9.1 Introduction 255  
     9.2 Growth of GaN Nanowall Network by LMBE Technique 257  
     9.3 Characterization of GaN Nanowall Network Grown by LMBE Technique 258  
     9.4 Properties of Homoepitaxial GaN Nanowall Network Grown on GaN Template 259  
        9.4.1 Structural Properties 259  
        9.4.2 Optical Properties 265  
        9.4.3 Electronic Structure 268  
        9.4.4 Effect of Wet-Etching 271  
     9.5 Properties of Heteroepitaxial GaN Nanowall Network Grown on Sapphire (0001) 273  
     9.6 Concluding Remarks and Future Perspective 274  
     Acknowledgements 275  
     References 275  
  10 Density Functional Theory (DFT) Study of Novel 2D and 3D Materials 279  
     10.1 Introduction 279  
     10.2 The Method of Calculations 281  
     10.3 Results and Discussion 281  
        10.3.1 Diluted Magnetic Semiconductors (DMSs) 281  
        10.3.2 Semiconductor and Metal Interface 284  
        10.3.3 Effects of Tantalum Incorporation into Diamond Films 287  
        10.3.4 Effects of Oxygen Incorporation into Diamond Films 288  
     10.4 Summary 289  
     References 290  
  11 Prospects of Nanostructured ZrO2 as a Point-of-Care Diagnostics 295  
     11.1 Introduction 295  
     11.2 Synthesis and Characterizations of ZrO2 Nanostructures 298  
     11.3 Biological Properties of ZrO2 302  
     11.4 ZrO2-Based Biosensors 303  
        11.4.1 ZrO2-Based Immunosensors 303  
        11.4.2 Enzymatic Biosensor 306  
        11.4.3 DNA Biosensor 309  
     11.5 Conclusions 311  
     References 312  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz