Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Design and Development of Metal-Forming Processes and Products Aided by Finite Element Simulation
  Großes Bild
 
Design and Development of Metal-Forming Processes and Products Aided by Finite Element Simulation
von: Ming Wang Fu
Springer-Verlag, 2016
ISBN: 9783319464640
258 Seiten, Download: 14010 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 7  
  Acknowledgements 10  
  Contents 11  
  1 Introduction 14  
     1.1 Introduction 14  
     1.2 Plastic Deformation of Materials 15  
     1.3 Forming Process 17  
        1.3.1 Cold Forming 17  
        1.3.2 Warm Forming 18  
        1.3.3 Hot Forming 19  
     1.4 Metal-Forming Process and System 20  
     1.5 Challenges in Metal-Formed Product Development 21  
        1.5.1 Multidomains Involved in Metal-Formed Product Development 23  
        1.5.2 Design of the Deformed Parts 26  
        1.5.3 Process and Process Parameter Configuration 28  
        1.5.4 Die Design and Its Service Life Analysis 29  
        1.5.5 Defect Formation, Prediction, and Avoidance 31  
        1.5.6 Optimization of Metal-Forming System 32  
     1.6 Summary 32  
     References 33  
  2 Rigid-Plastic Finite Element Method and FE Simulation 34  
     2.1 Introduction 34  
     2.2 Modeling and Simulation 36  
     2.3 Rigid-Plastic Finite Element Method 37  
        2.3.1 Cartesian Tensor Representation 37  
        2.3.2 Basic of Rigid-Plastic Finite Element Method 42  
        2.3.3 Finite Element Simulation 48  
     2.4 FE Simulation of Metal-Forming Systems 51  
        2.4.1 Modeling of Die and Workpiece 52  
        2.4.2 Modeling of Frictional Behaviors 54  
     2.5 Geometric Symmetry in FE Simulation 55  
     2.6 Validation and Verification of FE Simulation 59  
     2.7 Summary 62  
     References 63  
  3 Evaluation of Forming System Design 64  
     3.1 Introduction 64  
     3.2 Evaluation of Metal-Forming Systems 66  
        3.2.1 Factors Affecting the Design of Metal-Forming Systems 66  
        3.2.2 Design of Deformed Parts 70  
           3.2.2.1 Experimental Realization of the Twelve Design Scenarios 73  
           3.2.2.2 Simulation and Analysis of the Twelve Design Scenarios 74  
        3.2.3 Process and Die Design 87  
        3.2.4 Simulation-Aided Evaluation of Metal-Forming Systems 89  
     3.3 Realization of CAE Simulation 90  
        3.3.1 Simulation Procedure 91  
        3.3.2 Integrated Simulation Framework 92  
     3.4 Evaluation Methodology 94  
        3.4.1 Deformation Load 95  
        3.4.2 Effective Strain 95  
        3.4.3 Damage Factor 96  
        3.4.4 Maximum Effective Stress 97  
        3.4.5 Deformation Homogeneity 98  
        3.4.6 Evaluation Criterion 99  
     3.5 Case Studies 100  
     3.6 Summary 104  
     References 105  
  4 Die Design and Service Life Analysis 107  
     4.1 Introduction 107  
     4.2 Die Performance and Service Life 108  
     4.3 Stress-Based Die Design 110  
        4.3.1 Prestress in Design 111  
        4.3.2 Die Working Stress 116  
     4.4 Die Fatigue Life Analysis 120  
        4.4.1 Stress-Life Approach 121  
        4.4.2 Strain-Life Approach 122  
        4.4.3 Die Fatigue Life Assessment 124  
     4.5 Case Studies 126  
        4.5.1 Case Study 1 127  
        4.5.2 Case Study 2 128  
        4.5.3 Case Study 3 130  
           4.5.3.1 Design of Metal-Forming System 133  
           4.5.3.2 Integrated Simulation of Forming System 133  
           4.5.3.3 Procedure for Extraction of Simulation Results 136  
     4.6 Summary 141  
     References 141  
  5 Flow-Induced Defects in Multiscaled Plastic Deformation 143  
     5.1 Introduction 143  
     5.2 Flow-Induced Defect in Forming Processes 144  
        5.2.1 Flow-Induced Defect in Forming of Axisymmetric Parts with Flanged Features 147  
        5.2.2 Flow-Induced Defect in Forming of Non-asymmetrically Mesoscaled Parts 150  
           5.2.2.1 Mesoforming Experiment 150  
           5.2.2.2 FE Simulation 155  
     5.3 Defect Avoidance in Forming Process 157  
        5.3.1 Employment of Spring-Driven Die Insert Structure 157  
           5.3.1.1 Sliding Die Insert Design and Material Flow Behaviors 157  
           5.3.1.2 Spring and Die Insert Design Aided by FE Simulation 163  
           5.3.1.3 Case Studies for Folding Defect Avoidance 164  
        5.3.2 Feature-Based Approach for Folding Defect Avoidance 166  
           5.3.2.1 Feature-Based Approach 166  
           5.3.2.2 Detailed Approaches to Avoiding the Flow-Induced Defects 169  
           5.3.2.3 Physical Implementation of the Designed Forming Processes 171  
     5.4 Flow-Induced Defect and Size Effect in Meso- and Microforming 175  
        5.4.1 Experiments of Meso- and Microscaled Parts 176  
           5.4.1.1 Microcylindrical Compression Test 178  
           5.4.1.2 Microforming Experiments 179  
        5.4.2 Defect Analysis and Size Effect on Flow-Induced Defects 186  
           5.4.2.1 Geometry Size Effect on Folding Defect 187  
           5.4.2.2 Effect of Grain Size and Microstructure on Folding Defect 188  
     5.5 Summary 191  
     References 192  
  6 Ductile Fracture and Stress-Induced Defects in Multiscaled Plastic Deformation 193  
     6.1 Introduction 193  
     6.2 Ductile Fracture and Stress-Induced Defects 194  
     6.3 Size Effect on Ductile Fracture 198  
        6.3.1 Modeling of Deformation Behaviors Considering Size Effect 199  
        6.3.2 Surface Layer Model 200  
        6.3.3 Calculation and Comparison of Flow Stress Models in Simple Upsetting 202  
        6.3.4 Experiments and Simulations 206  
        6.3.5 Size Effect on Ductile Fracture 210  
     6.4 Hybrid Constitutive Modeling of Fracture in Microscaled Plastic Deformation 218  
        6.4.1 Hybrid Flow Stress Modeling 219  
           6.4.1.1 Macroscaled Flow Stress Modeling 219  
           6.4.1.2 Hybrid Constitutive Model 221  
        6.4.2 Methodology and Calculation 222  
           6.4.2.1 Coefficient Calibration Procedure of the Hybrid Constitutive Model 224  
           6.4.2.2 Calculation of Microscaled Deformation 226  
        6.4.3 Ductile Fracture Prediction 230  
        6.4.4 Stress-Induced Fracture Map 231  
     6.5 Applicability of DFCs in Microscaled Plastic Deformation 236  
        6.5.1 The Uncoupled DFCs 236  
        6.5.2 Applicability of the DFCs in Microscaled Plastic Deformation 239  
           6.5.2.1 Comparison of the Predicted Fracture Strain 240  
           6.5.2.2 Stress-Induced Fracture Map Using Different Fracture Criteria 243  
           6.5.2.3 The Generalized Fracture Model Formulation 245  
     6.6 Summary 256  
     References 257  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

  Info
Hier gelangen Sie wieder zum Online-Auftritt Ihrer Bibliothek
© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz